. | . |
New terahertz source could strengthen sensing applications by Staff Writers Chicago IL (SPX) Mar 29, 2016
Current terahertz sources are large, multi-component systems that sometimes require complex vacuum systems, external pump lasers, and even cryogenic cooling. The unwieldy devices are heavy, expensive, and hard to transport, operate, and maintain. Now Northwestern University's Manijeh Razeghi has developed a new type of security detection device that bypasses these issues. With the ability to detect explosives, chemical agents, and dangerous biological substances from safe distances, the device could make public spaces more secure than ever. "A single-component solution capable of room temperature continuous wave and widely frequency tunable operation is highly desirable to enable next generation terahertz systems," said Razeghi, Walter P. Murphy Professor of Electrical Engineering and Computer Science in Northwestern's McCormick School of Engineering. Director of Northwestern's Center for Quantum Devices, Razeghi and her team have demonstrated a room temperature continuous wave, highly tunable, high-power terahertz source. Based on nonlinear mixing in quantum cascade lasers, the source can emit up to multi-milliwatts of power and has a wide frequency coverage of one-to-five terahertz in pulsed mode operation. Funded by the National Science Foundation, Department of Homeland Security, Naval Air Systems Command, and NASA, the research was published on March 25 in Nature Scientific Reports. This new research builds on Razeghi group's many years of research with Northwestern's Center for Quantum Devices, including the development of the first single mode room temperature terahertz laser in 2011. "I am very excited about these results," Razeghi said. "No one would believe any of this was possible, even a couple years ago. This initial demonstration was very exciting, and continuing developing will lead us to the new frontier of terahertz technology."
Related Links Northwestern University Computer Chip Architecture, Technology and Manufacture Nano Technology News From SpaceMart.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |