![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Baltimore MD (SPX) Feb 27, 2018
Researchers from theUniversity of Maryland School of Medicine (UMSOM) and the University of Maryland A. James Clark School of Engineering have developed a new military vehicle shock absorbing device that may protect troops from traumatic brain injury (TBI) after a land mine blast. Over the past 18 years of conflicts in Iraq and Afghanistan, more than 250,000 troops have suffered such injuries. The research, conducted jointly by Gary Fiskum, PhD, M. Jane Matjasko Professor for Research and Vice-Chair, Department of Anesthesiology at UMSOM, and William Fourney, PhD, Associate Dean of the Clark School, Keystone Professor of Aerospace and Mechanical Engineering and Director of the Dynamic Effects Laboratory, is supported by the University of Maryland Strategic Partnership: MPowering the State, a collaboration between the University of Maryland, Baltimore (UMB) and the University of Maryland, College Park (UMCP).
New approach to study of blast-induced TBI Dr. Fiskum and Dr. Fourney were the first to demonstrate how the enormous acceleration (G-force) that occupants of vehicles experience during under-vehicle blasts can cause mild to moderate TBI even under conditions where other vital organs are unscathed. "Intense acceleration can destroy synapses, damage nerve fibers, stimulate neuroinflammation, and damage the brain's blood vessels," said Dr. Fiskum. The researchers also elucidated the molecular mechanisms responsible for this form of TBI. The findings are described in articles published in the Journal of Trauma and Acute Care Surgery, with Julie Proctor, MS, UMSOM lab manager, as primary author, and in Experimental Neurology, with Flaubert Tchantchou, PhD, UMSOM research associate, as primary author, and in the Journal of Neurotrauma, with Rao Gullapalli, PhD, UMSOM professor of diagnostic radiology, as senior author.
Mitigating G-force experienced by vehicle occupants "Essentially, it spreads out the application of force," Dr. Fourney said. "Polyurea is compressible and rebounds following compression, resulting in an excellent ability to decrease the acceleration." These results were combined with those of Dr. Tchantchou, who demonstrated that mitigation of g-force by the elastic frame designs virtually eliminates the behavioral alterations in lab rats and loss of neuronal connections observed using small scale vehicles with fixed frames, as published in the Journal of Neurotrauma. Peter Rock, MD, MBA, Martin Helrich Chair of the Department of Anesthesiology, noted, "The research team has addressed an important clinical problem by identifying a novel mechanism to explain TBI, engineered a solution to the problem, and convincingly demonstrated improvements in morphology and behavior. This work has important implications for improving outcomes in military blast-induced TBI and might be applicable to causes of civilian TBI, such as car crashes." Continued collaboration between the labs of Drs. Fiskum and Fourney has the potential to lead to the next generation of armor-protected military vehicles that will further protect occupants. An important next step will be testing a larger scale model. "If the data holds up for those, it will hold true for full scale," Dr. Fiskum said.
Project development funding
"Given the complexities of today's global health challenges, innovative discoveries are increasingly coming from the collaboration between disciplines, such as medicine and engineering," said E. Albert Reece, MD, PhD, MBA, Executive Vice President for Medical Affairs, UM Baltimore, and the John Z. and Akiko K. Bowers Distinguished Professor and Dean, University of Maryland School of Medicine. "We are proud that the School of Medicine is working in partnership with other entities across the University System of Maryland, so that we can maximize the impact we are having."
![]() ![]() How spacecraft testing enabled bone marrow research Greenbelt MD (SPX) Feb 23, 2018 In the 1970s, a NASA employee stepped up to a challenge posed by the National Institutes of Health or NIH: to freeze bone marrow. "Most people don't know that NASA's work isn't just aerospace," said Tom Williams , an engineer working on NASA's space-based communications relay, the Space Network, who responded to the challenge. "Our innovations help people who have nothing to do with the space program." Bone marrow presented a unique challenge to medical researchers. To maintain a sample viab ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |