. 24/7 Space News .
CYBER WARS
New tech delivers high-tech film that blocks electromagnetic interference
by Staff Writers
New York NY (SPX) Nov 02, 2018

Andre Taylor, associate professor of chemical and biomolecular engineering and collaborators developed an innovative technique to produce relatively low-cost composite films designed to block electromagnetic interference.

Electromagnetic interference (EMI), which can harm smartphones, tablets, chips, drones, wearables, and even aircraft and human health, is increasing with the explosive proliferation of devices that generate it. The market for EM-blocking solutions, which employ conductive or magnetic materials, is expected to surpass $7 billion by 2022.

Andre Taylor, associate professor of chemical and biomolecular engineering at the NYU Tandon School of Engineering, along with a team that included Yury Gogotsi, Distinguished University and Charles T. and Ruth M. Bach Professor Materials Science and Engineering at Drexel University, and Menachem Elimelech, Roberto C. Goizueta Professor of Chemical and Environmental Engineering at Yale University used an innovative technique to produce relatively low-cost EMI-blocking composite films.

The study, "Layer-by-Layer Assembly of Cross-Functional Semi-transparent MXene-Carbon Nanotubes Composite Films for Next-Generation Electromagnetic Interference Shielding," appears in the October 31, 2018 issue of Advanced Functional Materials. Lead authors include Guo-Ming Weng, a post-doctoral fellow at NYU Tandon, and Jinyang Li, associate professor of materials science and engineering at Southwest Jiaotong University, Chengdu, China.

To fashion the films, the team employed spin-spray layer-by-layer processing (SSLbL), a method Taylor pioneered in 2012. The system employs mounted spray heads above a spin coater that deposit sequential nanometer-thick monolayers of oppositely charged compounds on a component, producing high quality films in much less time than by traditional methods, such as dip coating.

The process allowed them to fashion flexible, semi-transparent EMI-shielding film comprising hundreds of alternating layers of carbon nanotube (CNT), an oppositely charged titanium carbide called MXene - a family of carbide flakes first engineered by Gogotsi - and polyelectrolytes. Taylor explained that those charge characteristics confer benefits beyond EMI shielding.

"As we worked to discern the roles different components play," he said, "We found that the strong electrostatic and hydrogen bonding between oppositely charged CNT and MXene layers conferred high strength and flexibility."

He added that MXene has the dual benefits of being both adsorbing (it easily adheres to a surface) and conductive, which is important for blocking EMI. "And since the film itself is semi-transparent, it has the benefit of being applicable as EMI shielding for devices with display screens, such as smartphones. Other kinds of shields - metal for example - are opaque. Shielding is good, but shielding that allows visible light through is even better."

The SSLbL method also confers nanometer-level control over the architecture of the film, allowing manufacturers to change specific qualifies such as conductivity or transparency, because it allows for discrete changes in the composition of each layer.

By contrast, films comprising a monolayer melange of nanoparticles, polyelectrolytes and graphene in a matrix cannot be so modified. Besides high stability, flexibility and semi-transparency, the MXene-CNT composite films also demonstrated high conductivity, a property critical to electromagnetic shielding because it dissipates EM pulses across the film's surface, weakening and dispersing it.

While manufacturers have shown interest in EMI shielding made of carbon nanotubes and graphene combined with conductive polymer composites, until now a relatively fast, inexpensive, means of creating an optimal mix of these qualities on a thin flexible film was elusive, explained Taylor.

"The primary interest in adding carbon materials to shielding was to add conductive pathways through the film," said Taylor.

"But the SSLbL system is also much faster than traditional dip coating, in which a component to be shielded is repeatedly dipped in a material, rinsed, then dipped again in another layer, and on and on. That takes days. Our system can create hundreds of bi-layers of alternating MXene and CNT in minutes."

While spin-spraying limits component size, Taylor said that, in theory, the system could create EMI shielding for devices and components equivalent in diameter to the 12-inch wafers, for which spin-coating is frequently employed as a coating mechanism in the semiconductor industry.

"It is less expensive to produce it this way and faster because of the tighter connection between materials, and the LbL process facilitates the controlled arrangement and assembly of disparate nanostructured materials much better than just depositing repeated layers of a mix on several components. One can envision tuning the desired properties of a cross-functional thin film using a wide range of parameters, nanostructured materials and polyelectrolytes using this system."

Research Report: "Layer-by-Layer Assembly of Cross-Functional Semi-transparent MXene-Carbon Nanotubes Composite Films for Next-Generation Electromagnetic Interference Shielding"


Related Links
NYU Tandon School of Engineering
Cyberwar - Internet Security News - Systems and Policy Issues


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CYBER WARS
Africa needs to beef up cyber security urgently: experts
Abidjan (AFP) Oct 26, 2018
Africa is being increasingly targeted by hackers and must invest in cyber security, industry leaders said at the third Africa Cyber Security Conference closing Friday in Ivory Coast. Although Africa is not a prime target, "cyber threats have no more borders" and data pirates "attack anything that moves", said Michel Bobillier, a leader of IBM's elite security unit, the Tiger Team. "The creativity of these people is very great, they have organisations, real structured ecosystems, with a great dea ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CYBER WARS
Plant hormone makes space farming a possibility

Installing life support the hands-free way

US-Russia space cooperation to go on despite Soyuz launch mishap

Escape capsule with Soyuz MS-10 crew hit ground 5 times before stopping

CYBER WARS
Russia launches first Soyuz rocket since failed space launch

Taxi tests for Paul Allen's Stratolaunch successfully reach 90 mph

Probe commission rules out sabotage as possible cause of Soyuz failure

US astronaut Hague 'amazed' by Russian rescue team's work after Soyuz failure

CYBER WARS
Mars Express keeps an eye on curious cloud

Desert test drive for Mars rover controlled from 1,000 miles away

NASA's InSight will study Mars while standing still

NASA Mars team actively listening out for Opportunity

CYBER WARS
China's space programs open up to world

China's commercial aerospace companies flourishing

China launches Centispace-1-s1 satellite

China tests propulsion system of space station's lab capsules

CYBER WARS
Ministers endorse vision for the future of Europe in space

Space industry entropy

European Space Talks: we need more space!

Source reveals timing of OneWeb satellites' debut launch on Soyuz

CYBER WARS
Eye-tracking glasses provide a new vision for the future of augmented reality

Flexy, flat and functional magnets

The materials engineers are developing environmentally friendly materials

Researchers discover weak chemical interactions hold together box of infinite possibilities

CYBER WARS
Rocky and habitable - sizing up a galaxy of planets

Some planetary systems just aren't into heavy metal

Giant planets around young star raise questions about how planets form

Plan developed to characterize and identify ocean worlds

CYBER WARS
SwRI team makes breakthroughs studying Pluto orbiter mission

ALMA maps temperature of Jupiter's icy moon Europa

NASA's Juno Mission Detects Jupiter Wave Trains

WorldWide Telescope looks ahead to New Horizons' Ultima Thule glyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.