Subscribe free to our newsletters via your
. 24/7 Space News .




ICE WORLD
New study shows major increase in West Antarctic glacial loss
by Staff Writers
Washington DC (SPX) Mar 31, 2014


A satellite image of Pine Island Glacier shows an 18-mile-long crack across the glacier. Researchers used cracks and other physical features on the glaciers to calculate glacier acceleration by comparing image data from year to year to see how far the cracks traveled. Image courtesy NASA.

Six massive glaciers in West Antarctica are moving faster than they did 40 years ago, causing more ice to discharge into the ocean and global sea level to rise, according to new research.

The amount of ice draining collectively from those half-dozen glaciers increased by 77 percent from 1973 to 2013, scientists report this month in Geophysical Research Letters, a journal of the American Geophysical Union. Pine Island Glacier, the most active of the studied glaciers, has accelerated by 75 percent in 40 years, according to the paper. Thwaites Glacier, the widest glacier, started to accelerate in 2006, following a decade of stability.

The study is the first to look at the ice coming off the six most active West Antarctic glaciers over such an extended time period, said Jeremie Mouginot, a glaciologist at University of California-Irvine (UC-Irvine) who co-authored the paper. Almost 10 percent of the world's sea-level rise per year comes from just these six glaciers, he said.

"What we found was a sustained increase in ice discharge-which has a significant impact on sea level rise," he said.

The researchers studied the Pine Island, Thwaites, Haynes, Smith, Pope and Kohler glaciers, all of which discharge ice into a vast bay known as the Amundsen Sea Embayment in West Antarctica.

The amount of ice released by these six glaciers each year is comparable to the amount of ice draining from the entire Greenland Ice Sheet annually, Mouginot said. If melted completely, the glaciers' disappearance would raise sea levels another 1.2 meters (four feet), according to co-author and UC-Irvine Professor Eric Rignot.

The decades of increasing speeds and ice loss are "a strong indication of a major, long-term leakage of ice into the ocean from that sector of Antarctica," noted Rignot.

"This region is considered the potential leak point for Antarctica because of the low seabed. The only thing holding it in is the ice shelf," said Robert Thomas, a glaciologist at the NASA Wallops Flight Facility, in Wallops Island, Va., who was not involved in the study. Ice shelves are platforms of permanent floating ice that form where glaciers meet the sea. In West Antarctica, ice shelves prevent the glaciers investigated in the study from slipping more rapidly into the ocean.

Mouginot and his colleagues used satellite data to look at sequential images of the glaciers from 1973 to 2013. The scientists then calculated how fast the ice was moving by tracking surface features, such as cracks in the ice, to determine the distance the glaciers traveled from month to month and year to year.

While the study considered the six glaciers collectively, it also revealed unprecedented change on the individual glacier level. Thwaites Glacier, the largest of the six with a width of 120 kilometers (75 miles), experienced a decade of near-stability until 2006, when its speed picked up by 0.8 kilometers (half a mile) per year - a 33 percent increase in speed, according to the study. This is the first time that such changes on Thwaites Glacier have been observed, said Mouginot.

Of all the glaciers in the study, Pine Island Glacier accelerated the most since 1973, increasing by 1.7 kilometers (one mile), per year. That's a 75 percent increase in speed from approximately 2.5 kilometers (1.5 miles) per year in 1973 to 4 kilometers (2.5 miles) per year in 2013.

Both Pine Island and Thwaites glaciers contribute the most to overall ice discharge-about three-fourths of the total amount documented in the study. However, scientists also documented even higher rates of increased discharge in some of the smaller glaciers. Smith and Pope Glaciers nearly tripled the amount of ice they drained into the ocean since 1973.

The research team also found that the Pine Island Glacier is accelerating along its entire drainage system-up to 230 kilometers (155 miles) inland from where it meets the ocean.

"This paper is important in showing that a glacier can actually 'feel' what is happening far downstream of itself," said Thomas. "It means that if you disturb the ice sheet near the coast, the glaciers will feel the push and rapidly respond hundreds of kilometers inland."

This finding suggests that glacier acceleration models may need to be reevaluated, Thomas added. Most current models only take into account isolated speed changes resulting from a local disturbance, rather than representing how these changes affect the glacier as a whole.

"Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013"

.


Related Links
American Geophysical Union
Beyond the Ice Age






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ICE WORLD
Computer model predicts vastly different ecosystem in Antarctica's Ross Sea
Washington DC (SPX) Mar 21, 2014
The Ross Sea, a major, biologically productive Antarctic ecosystem, "clearly will be extensively modified by future climate change" in the coming decades as rising temperatures and changing wind patterns create longer periods of ice-free open water, affecting the life cycles of both predators and prey, according to a paper published by researchers funded by the National Science Foundation (NSF). ... read more


ICE WORLD
Unique camera from NASA's moon missions sold at auction

Expeditions to the Moon: beware of meteorites

ASU camera creates stunning mosaic of moon's polar region

China's Jade Rabbit lunar rover rouses from latest slumber

ICE WORLD
Helpful Wind Cleans Solar Panels On Opportunity Mars Rover

NASA Mars Rover's Next Stop Has Sandstone Variations

Mars on Earth: vacuum chambers mimic the Red Planet

NASA Orbiter Finds New Gully Channel on Mars

ICE WORLD
You've got mail: Clinton-to-space laptop up for auction

E3-production - sustainable manufacturing

US more dependent on Russia in space, than Russia on US - NASA

TED turns 30 with new chapter of 'ideas worth spreading'

ICE WORLD
Tiangong's New Mission

"Space Odyssey": China's aspiration in future space exploration

China to launch first "space shuttle bus" this year

China expects to launch cargo ship into space around 2016

ICE WORLD
New ISS Crew Wrapping Up Training for Launch

How astronauts survive diplomatic tensions in space

NASA Extends Lockheed Martin Contract to Support ISS

Russian Progress Spacecraft Boosts ISS Orbit

ICE WORLD
Arianespace Launches ASTRA 5B and Amazonas 4A

SpaceX Launch to the ISS Reset for March 30

Ariane 5 hardware arrives for next ATV mission

Proton-M with two Russian communication satellites on board blasts off from Baikonur

ICE WORLD
Space Sunflower May Help Snap Pictures of Planets

NRL Researchers Detect Water Around a Hot Jupiter

UK joins the planet hunt with Europe's PLATO mission

X-ray laser FLASH spies deep into giant gas planets

ICE WORLD
Parallel programming may not be so daunting

China's rare earth trade limits break global rules: WTO

Big Data keeps complex production running smoothly

Facebook takes $2 billion dive into virtual reality




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.