. 24/7 Space News .
TECH SPACE
New results reveal high tunability of 2-D material
by Staff Writers
Berkeley CA (SPX) Aug 28, 2017


From left: Kaiyuan Yao, Nick Borys, and P. James Schuck, seen here at Berkeley Lab's Molecular Foundry, measured a property in a 2-D material that could help realize new applications. Credit Marilyn Chung/Berkeley Lab

Two-dimensional materials are a sort of a rookie phenom in the scientific community. They are atomically thin and can exhibit radically different electronic and light-based properties than their thicker, more conventional forms, so researchers are flocking to this fledgling field to find ways to tap these exotic traits.

Applications for 2-D materials range from microchip components to superthin and flexible solar panels and display screens, among a growing list of possible uses. But because their fundamental structure is inherently tiny, they can be tricky to manufacture and measure, and to match with other materials. So while 2-D materials R and D is on the rise, there are still many unknowns about how to isolate, enhance, and manipulate their most desirable qualities.

Now, a science team at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) has precisely measured some previously obscured properties of moly sulfide, a 2-D semiconducting material also known as molybdenum disulfide or MoS2. The team also revealed a powerful tuning mechanism and an interrelationship between its electronic and optical, or light-related, properties.

To best incorporate such monolayer materials into electronic devices, engineers want to know the "band gap," which is the minimum energy level it takes to jolt electrons away from the atoms they are coupled to, so that they flow freely through the material as electric current flows through a copper wire. Supplying sufficient energy to the electrons by absorbing light, for example, converts the material into an electrically conducting state.

As reported in the Aug. 25 issue of Physical Review Letters, researchers measured the band gap for a monolayer of moly sulfide, which has proved difficult to accurately predict theoretically, and found it to be about 30 percent higher than expected based on previous experiments. They also quantified how the band gap changes with electron density - a phenomenon known as "band gap renormalization."

"The most critical significance of this work was in finding the band gap," said Kaiyuan Yao, a graduate student researcher at Berkeley Lab and the University of California, Berkeley, who served as the lead author of the research paper.

"That provides very important guidance to all of the optoelectronic device engineers. They need to know what the band gap is" in orderly to properly connect the 2-D material with other materials and components in a device, Yao said.

Obtaining the direct band gap measurement is challenged by the so-called "exciton effect" in 2-D materials that is produced by a strong pairing between electrons and electron "holes" - vacant positions around an atom where an electron can exist. The strength of this effect can mask measurements of the band gap.

Nicholas Borys, a project scientist at Berkeley Lab's Molecular Foundry who also participated in the study, said the study also resolves how to tune optical and electronic properties in a 2-D material.

"The real power of our technique, and an important milestone for the physics community, is to discern between these optical and electronic properties," Borys said.

The team used several tools at the Molecular Foundry, a facility that is open to the scientific community and specializes in the creation and exploration of nanoscale materials.

The Molecular Foundry technique that researchers adapted for use in studying monolayer moly sulfide, known as photoluminescence excitation (PLE) spectroscopy, promises to bring new applications for the material within reach, such as ultrasensitive biosensors and tinier transistors, and also shows promise for similarly pinpointing and manipulating properties in other 2-D materials, researchers said.

The research team measured both the exciton and band gap signals, and then detangled these separate signals. Scientists observed how light was absorbed by electrons in the moly sulfide sample as they adjusted the density of electrons crammed into the sample by changing the electrical voltage on a layer of charged silicon that sat below the moly sulfide monolayer.

Researchers noticed a slight "bump" in their measurements that they realized was a direct measurement of the band gap, and through a slew of other experiments used their discovery to study how the band gap was readily tunable by simply adjusting the density of electrons in the material.

"The large degree of tunability really opens people's eyes," said P. James Schuck, who was director of the Imaging and Manipulation of Nanostructures facility at the Molecular Foundry during this study.

"And because we could see both the band gap's edge and the excitons simultaneously, we could understand each independently and also understand the relationship between them," said Schuck, now at Columbia University. "It turns out all of these properties are dependent on one another."

Moly sulfide, Schuck also noted, is "extremely sensitive to its local environment," which makes it a prime candidate for use in a range of sensors. Because it is highly sensitive to both optical and electronic effects, it could translate incoming light into electronic signals and vice versa.

Schuck said the team hopes to use a suite of techniques at the Molecular Foundry to create other types of monolayer materials and samples of stacked 2-D layers, and to obtain definitive band gap measurements for these, too. "It turns out no one yet knows the band gaps for some of these other materials," he said.

The team also has expertise in the use of a nanoscale probe to map the electronic behavior across a given sample.

Borys added, "We certainly hope this work seeds further studies on other 2-D semiconductor systems."

The Molecular Foundry is a DOE Office of Science User Facility that provides free access to state-of-the-art equipment and multidisciplinary expertise in nanoscale science to visiting scientists.

Researchers from the Kavli Energy NanoSciences Institute at UC Berkeley and Berkeley Lab, and from Arizona State University also participated in this study, which was supported by the National Science Foundation.

Research paper

TECH SPACE
Breakthrough made in ultra-high strength steel
Washington (UPI) Aug 25, 2017
A team of mechanical engineers has developed a super steel called D & P Steel to improve the strength-ductility trade-off. Aerospace, automotive and defense applications need metallic materials with ultra-high strength, and in some high-loading structural applications metallic materials also need to have large ductility and high toughness to allow for the precise forming of structural c ... read more

Related Links
Lawrence Berkeley National Laboratory
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
What's hot and what's not at Berlin's IFA tech fair

'Star Trek' actor Shatner sends message to Voyager

ESA retrieves NASA astronauts with new procedure in wake of hurricane

Record-breaking NASA astronaut comes back to Earth

TECH SPACE
Pentagon Will Have to Rely on Russian Rocket Engines Until Mid-2020s

NASA Concludes Summer of Testing with Fifth Flight Controller Hot Fire

SpaceX tests first stage of 'world's most powerful rocket'

Kacific selects SpaceX to provide launch service

TECH SPACE
Life on Mars: Let's Try Oman Desert First for Space Mission

Opportunity seeks energy-favorable locations to recharge during winter

For Moratorium on Sending Commands to Mars, Blame the Sun

Tributes to wetter times on Mars

TECH SPACE
China, Russia to Have Smooth Space Cooperation, Says Expert

Kuaizhou-11 to send six satellites into space

Russia, China May Sign 5-Year Agreement on Joint Space Exploration

ESA and Chinese astronauts train together

TECH SPACE
ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

LISA Pathfinder: bake, rattle and roll

Bids for government funding prove strong interest in LaunchUK

Blue Sky Network Reaffirms Commitment to Brazilian Market

TECH SPACE
Artificial intelligence analyzes gravitational lenses 10 million times faster

Van Allen probes survive extreme radiation five years on

Europe's biggest X-ray laser begins operations

Non-thermal atmospheric pressure plasma treatment for leather products

TECH SPACE
Ultraviolet Light May Be Ultra Important in Search for Life

FINESSE Mission to Investigate Atmospheres of Hundreds of Alien Worlds

NASA Team Passes Major Technological Milestone for Characterizing Exoplanets

X-ray footprinting solves mystery of metal-breathing protein

TECH SPACE
Juno Scientists Prepare for Seventh Science Pass of Jupiter

To Pluto and beyond

New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

Juno spots Jupiter's Great Red Spot









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.