Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
New research could lead to more energy storage
by Staff Writers
Livermore, CA (SPX) Mar 06, 2015


Lawrence Livermore research has opened a new window toward more efficient electrochemical energy storage systems. Image courtesy Ryan Chen/LLNL.

Lawrence Livermore researchers have identified electrical charge-induced changes in the structure and bonding of graphitic carbon electrodes that may one day affect the way energy is stored.

The research could lead to an improvement in the capacity and efficiency of electrical energy storage systems, such as batteries and supercapacitors, needed to meet the burgeoning demands of consumer, industrial and green technologies.

Future technology requires energy storage systems to have much larger storage capability, rapid charge/discharge cycling and improved endurance. Progress in these areas demands a more complete understanding of energy storage processes from atomic through micron-length scales.

Because these complex processes can change significantly as the system is charged and discharged, researchers have increasingly focused on how to look inside an operating energy storage system. While computational approaches have advanced over the last few decades, the development of experimental approaches has been very challenging, particularly for studying the light elements that are prevalent in energy storage materials.

Recent work by an LLNL-led team developed a new X-ray adsorption spectroscopy capability that is tightly coupled with a modeling effort to provide key information about how the structure and bonding of graphitic carbon supercapacitor electrodes are affected by polarization of the electrode - electrolyte interfaces during charging.

Graphitic supercapacitors are ideal model systems to probe interfacial phenomena because they are relatively chemically stable, extensively characterized experimentally and theoretically and are interesting technologically. The team used its recently developed 3D nanographene (3D-NG) bulk electrode material as a model graphitic material.

"Our newly developed X-ray adsorption spectroscopy capability allowed us to detect the complex, electric-field induced changes in electronic structure that graphene-based supercapacitor electrodes undergo during operation. Analysis of these changes provided information on how the structure and bonding of the electrodes evolve during charging and discharging," said Jonathan Lee, an LLNL scientist and corresponding author of a paper scheduled to appear as the cover article of the March 4 edition of the journal, Advanced Materials.

"The integration of unique modeling capabilities for studying the charged electrode-electrolyte interface played a crucial role in our interpretation of the experimental data."

Discovering that the electronic structure of graphitic carbon supercapacitor electrodes can be tailored by charge-induced electrode-electrolyte interactions opens a new window toward more efficient electrochemical energy storage systems. In addition, the experimental and modeling techniques developed during the research are readily applicable to other energy storage materials and technologies.

Other Livermore researchers include Michael Bagge-Hansen, Brandon Wood, Tadashi Ogitsu, Trevor Willey, Ich Tran, Arne Wittstock, Monika Biener, Matthew Merrill, Marcus Worsley, Theodore Baumann, Tony van Buuren and Jurgen Biener. The research was conducted in collaboration with scientists at additional institutions, including Minoru Otani from the Nanosystem Research Institute in Japan, David Prendergast from the Molecular Foundry, and Jinghua Guo and Cheng-Hao Chuang of the Advanced Light Source Division at Lawrence Berkeley National Laboratory. A substantial portion of the research was supported by LLNL's Laboratory Directed Research and Development (LDRD) program.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
DOE/Lawrence Livermore National Laboratory
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ENERGY TECH
Lithium from the coal in China
Handan, China (SPX) Feb 27, 2015
Coal from China could become a major source of the metal lithium, according to a review of the geochemistry by scientists published in the International Journal of Oil, Gas and Coal Technology. Lithium is an essential component of rechargeable batteries used almost ubiquitously in mobile gadgets such as phones, laptops, tablet computers and in many electric vehicles. Worldwide annual consu ... read more


ENERGY TECH
Core work: Iron vapor gives clues to formation of Earth and moon

Application of laser microprobe technology to Apollo samples refines lunar impact history

NASA releases video of the far side of the Moon

US Issuing Licenses for Mineral Mining on Moon

ENERGY TECH
Use of Rover Arm Expected to Resume in a Few Days

Research Suggests Mars Once Had More Water than Earth's Arctic Ocean

Mars Colonization Edges Closer Thanks to MIT's Oxygen Factory

Revolutionary Engine Could Fuel Human Life on Mars

ENERGY TECH
Orion's Launch Abort System Motor Exceeds Expectations

Cheap yen, fading Fukushima fears lure Japan tourists

Dubai to build 'Museum of the Future'

Old-economy sectors are now tech, too: US study

ENERGY TECH
China at technical preparation stage for Mars, asteroid exploration

China's moon rover Yutu functioning but stationary

Argentina welcomes first Chinese satellite tracking station outside China

More Astronauts for China

ENERGY TECH
US astronauts speed through spacewalk at orbiting lab

Watching Alloys Change from Liquid to Solid Could Lead to Better Metals

NASA Hopes to Continue Cooperation on ISS Until 2024

Russia to use International Space Station till 2024

ENERGY TECH
Arianespace's Soyuz ready for next dual-satellite Galileo launch

Soyuz Installed at Baikonur, Expected to Launch Wednesday

Arianespace certified to ISO 50001 at Guiana Space Center

SpaceX launches two communications satellites

ENERGY TECH
Scientists: Nearby Earth-like planet isn't just 'noise'

Exorings on the Horizon

Planet 'Reared' by Four Parent Stars

Planets Can Alter Each Other's Climates over Eons

ENERGY TECH
The rub with friction

3D printed parts provide cheap, custom alternatives for lab equipment

Game makers lured into virtual worlds

Sony virtual reality head gear set for 2016 release




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.