. | . |
New polymer goes for a walk when illuminated by Staff Writers Eindhoven, Netherlands (SPX) Jul 03, 2017
Scientists at Eindhoven University of Technology and Kent State University have developed a new material that can undulate and therefore propel itself forward under the influence of light. To this end, they clamp a strip of this polymer material in a rectangular frame. When illuminated it goes for a walk all on its own. This small device, the size of a paperclip, is the world's first machine to convert light directly into walking, simply using one fixed light source. The researchers publish their findings on 29 June in the scientific journal Nature. The maximum speed is equivalent to that of a caterpillar, about half a centimeter per second. The researchers think it can be used to transport small items in hard-to-reach places or to keep the surface of solar cells clean. They placed grains of sand on the strip and these were removed by the undulating movement. The mechanism is so powerful that the strip can even transport an object that is much bigger and heavier than the device itself, uphill. The motion of the new material is due to the fact that one side contracts in reaction to light, and the other one expands, causing it to bulge when illuminated. That deformation disappears instantaneously once the light is gone. Although the material looks transparent to the human eye, it fully absorbs the violet light the researchers used, thus creating a shadow behind it. The scientific team, led by professor Dick Broer of Eindhoven University of Technology, was able to create a continual undulating movement, using this 'self-shadowing' effect. They attached a strip of the material in a frame shorter than the strip itself, causing it to bulge. Then they shone a concentrated led light on it, from in front. The part of the strip that is in the light, starts to bulge downward, creating a 'dent' in the strip. As a consequence, the next part of the strip comes in the light and starts to deform. This way the 'dent' moves backwards, creating a continual undulating movement. This sets the device in motion, walking away from the light. When the device is placed upside down, the wave travels in the opposite direction, causing it to walk towards the light. The research team managed to reach this specific behavior of the material using 'liquid crystals' (familiar in liquid crystal displays; lcd's). The principle relies on the incorporation of a fast responding light-sensitive variant in a liquid crystalline polymer network. They engineered a material in such a way that this response is translated to an instantaneous deformation of the strip when illuminated, and relaxation directly when the light is gone. The paper in Nature is entitled 'Making waves in a photoactive polymer film (DOI 10.1038/nature22987).' The authors are Anne Helene Gelebart1, Dirk Jan Mulder1, Michael Varga2, Andrew Konya2, Ghislaine Vantomme1, Bert Meijer1, Robin Selinger2 and Dick Broer1 (1: Eindhoven University of Technology, 2: Kent State University). The empirical study took place in Eindhoven with the corresponding theoretical model being developed in Kent, Ohio. The research was made possible by subsidies from the Dutch research funding agency NWO and the European Research Council.
Washington (UPI) Jun 29, 2017 Archaeologists have recovered the earliest evidence of plant-based textile dyeing. The evidence is a 3,000-year-old piece of cloth found in Israel's Arava desert. Researchers say the record-setting wool and linen fragments offer insights into the textile industry that supported a highly hierarchical society in Israel's Timna Valley during between the 13th and 10th centuries BC. " ... read more Related Links Eindhoven University of Technology Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |