![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Washington DC (SPX) Jun 04, 2019
The first minerals to form in the universe were nanocrystalline diamonds, which condensed from gases ejected when the first generation of stars exploded. Diamonds that crystallize under the extreme pressure and temperature conditions deep inside of Earth are more typically encountered by humanity. What opportunities for knowledge are lost when mineralogists categorize both the cosmic travelers and the denizens of deep Earth as being simply "diamond"? Could a new classification system that accounts for minerals' distinct journeys help us better understand mineralogy as a process of universal and planetary evolution? The current system for classifying minerals - developed by James Dwight Dana in the 1850s - categorizes more than 5,400 mineral "species" based on their dominant chemical compositions and crystalline structures. This is an unambiguous, robust, and reproducible designation scheme. Carnegie's Robert Hazen suggests an additional classification system, which could amplify existing knowledge of how minerals evolve over time without superseding the existing designations. In American Mineralogist's Roebling Medal Paper, Hazen argues for categories that reflect a deeper, more-modern understanding of planetary scale transformation over time. A system grouping minerals and non-crystalline natural solids - which are not currently classified by the existing system - into what Hazen calls "natural kind clusters" would better reflect the inherent messiness of planetary evolution, he explains. "For maximum efficacy, scientific classification systems must not just organize and define, but also reflect current theory, and allow it to expand and guide us to new conclusions," Hazen says. He pioneered the concept of mineral evolution - linking an explosion in mineral diversity to the rise of life on Earth and the resulting oxygen-rich atmosphere. Hazen then added another layer to his vision by introducing mineral ecology - which analyzes the spatial distribution of Earth's minerals to predict which ones remain undiscovered and to assert our planet's mineralogical uniqueness. A system of categorization that reflects not just a mineral's chemistry and crystalline structure, but also the physical, chemical, or biological processes by which it formed, would be capable of recognizing that nanodiamonds from space are fundamentally different to diamonds formed in Earth's depths. The existing classification system groups some minerals with disparate formation histories together in one category, while splitting others with similar origin stories into separate mineral species. Another example: currently 32 different mineral species of the "tourmaline group" are delineated by the distribution of the major elements of which they are comprised. So, a single shard of tourmaline with slight variations in chemistry often contains multiple species of the mineral, even if they all formed in the same geologic event. A natural kind classification system would rectify that problem, and allow for the inclusion of non-crystalline materials, such as volcanic glass, amber, and coal, which currently aren't counted as minerals, but can offer knowledge about our evolving planet. "Earth's mineralogy tells vivid stories, revealing how eons of geologic activity and the rise of life facilitated novel combinations of elements," Hazen argues. "But to glean every nuance of this mineralogical text, we must embrace a new language for describing the creation of minerals that reflects the passage of time."
![]() ![]() New Studies Increase Confidence in NASA's Measure of Earth's Temperature Greenbelt MD (SPX) May 27, 2019 A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures. The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values are likely accurate to withi ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |