![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Ames IA (SPX) Aug 17, 2016
Researchers at the U.S. Department of Energy's Ames Laboratory have discovered a new type of Weyl semimetal, a material that opens the way for further study of Weyl fermions, a type of massless elementary particle hypothesized by high-energy particle theory and potentially useful for creating high-speed electronic circuits and quantum computers. Researchers created a crystal of molybdenum and tellurium, one of only a few compounds that had been predicted to host a new and recently postulated type of Weyl state, where the hole and electron bands normally separated by an indirect gap touch at a few Weyl points. Those points are equivalent to magnetic monopoles in the momentum space and are connected by Fermi arcs. A combination of angle resolved photoemission spectroscopy (ARPES), modelling, density functional theory and careful calculations were used to confirm the existence of this new type of Weyl semimetal. This material provides an exciting new platform to study the properties of Weyl fermions, and may lead the way to more new materials with unusual transport properties. "This an important, interdisciplinary discovery because it allows us to study many aspects of these exotic particles predicted by high energy physics theory in solid state, without need for extremely expensive particle accelerators," said Adam Kaminsky, Ames Laboratory scientist and professor in the Department of Physics and Astronomy at Iowa State University. "From my perspective as solid state physicist it is absolutely extraordinary to observe two bands touching each other at certain points and being connected by Fermi arcs - objects that are prohibited to exist in "ordinary" materials." The research is further discussed in a paper, "Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2"; authored by Lunan Huang, Timothy M. McCormick, Masayuki Ochi, Zhiying Zhao, Michi-To Suzuki, Ryotaro Arita, Yun Wu, Daixiang Mou, Huibo Cao, Jiaqiang Yan, Nandini Trivedi and Adam Kaminski; and published in Nature Materials.
Related Links Ames Laboratory Understanding Time and Space
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |