. 24/7 Space News .
CAR TECH
New material could replace expensive platinum catalysts used in hydrogen cars
by Staff Writers
Buffalo NY (SPX) Jun 01, 2018

A round-bottom flask filled with cofacial cobalt porphyrin, a new catalyst for hydrogen fuel cells.

What's better than platinum? In hydrogen fuel cells, the answer is cofacial cobalt porphyrins. It's a mouthful to say, and if you're not a chemist, you've probably never heard of these compounds before. But these molecules - which are great at facilitating a chemical reaction that's needed to produce power from hydrogen and oxygen - could be the next big advance in alternative energy.

The compounds assemble themselves in the lab from Lego-like chemical building blocks that are designed to fit together. It's shake-and-bake technology: Scientists add the pieces to a flask, stir them together and add heat. Over time, the building blocks join together in the right places to form the final complexes.

The material is cheap and easy to produce in large quantities. This makes it an ideal candidate for replacing costly platinum catalysts used in hydrogen fuel cells today, says Timothy Cook, PhD, assistant professor of chemistry in the University at Buffalo College of Arts and Sciences, whose team designed the new self-assembled compounds.

Such technology could one day enable automakers to slash the price of hydrogen cars, putting the eco-friendly vehicles within reach for more consumers. Low-cost fuel cells could also drive the development of other hydrogen-powered devices, such as backup generators. Hydrogen is considered a clean energy source because fuel cells emit only water as a byproduct.

"To bring down the price of hydrogen vehicles and make them a realistic option for more people, we need a catalyst that's cheaper than platinum," Cook says. "The catalyst we made can be self-assembled in huge quantities. It has ruthenium and cobalt in it - much cheaper metals - and, yet, it works as well or better than a commercially available platinum catalyst that we tested alongside it."

A study describing the new material was published on May 29 in Chemistry: A European Journal. Cook's co-authors included first author Amanda N. Oldacre, a recent UB chemistry PhD graduate; UB chemistry PhD student Matthew R. Crawley; and Alan E. Friedman, PhD, research associate professor of materials design and innovation in the UB School of Engineering and Applied Sciences.

A self-manufacturing catalyst
Cook's lab specializes in molecular self-assembly, a powerful process for creating new materials.

"When I think about molecular self-assembly, I always think about Legos," he says. "You have building blocks that are designed to fit together, like pieces of a puzzle. These building blocks are attracted to each other, and when you put them together and add energy, they come together on their own.

"Self-assembly is a great way to make a complex molecule. Usually, to synthesize a new material, you have to add pieces one by one, which takes time and money. Molecular self-assembly is faster - it's a one-step process."

Cofacial cobalt porphyrins consist of two flat molecules called cobalt porphyrins, which are stacked on top of each other like sandwich bread and linked by ruthenium "clips."

To create the final compounds, Cook's lab designed porphyrins and clips with chemical properties that ensured they would connect to each other at the right spots. The team then mixed a solution of the porphyrins with the clips and added heat. In two days, the pieces had self-assembled to form the cofacial cobalt porphyrins.

A catalyst inspired by nature
Like the platinum catalyst they're designed to replace, the cofacial cobalt porphyrins facilitate a chemical reaction in hydrogen fuel cells called oxygen reduction. This involves splitting an oxygen molecule into two separate oxygen atoms that can then bind with hydrogen to form water - an interaction that produces energy.

Scientists have long known that porphyrins are great at grabbing and splitting oxygen: In the human body, iron-based versions of these molecules are responsible for helping to convert the oxygen we breathe into water, releasing energy in the process, Cook says.

But designing artificial porphyrin structures that act as catalysts has been difficult, he adds. The process of creating these compounds is usually expensive, involving many steps and generating very little material at the end.

Self-assembly solves these problems: Cook's team created 79 grams of cofacial cobalt porphyrins for every 100 grams of starter material - much better than the less than 1 percent yield that other labs have reported when synthesizing similar materials. In addition, his team was able to easily swap out and test ruthenium clips of different lengths to fine tune the compound's electrochemical qualities with an eye toward designing an ideal catalyst.

"It is truly rewarding to work on the fundamental chemistry of this project, which could have a large impact on carbon-neutral energy conversion," says Oldacre, the first author. "Using self-assembly techniques, we are able to make cheaper materials in 48 hours, without the difficult, time-consuming purification steps that other methods for synthesizing new compounds require."

Research paper


Related Links
University at Buffalo
Car Technology at SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CAR TECH
Waymo adds 62,000 vehicles for autonomous taxi service
San Francisco (AFP) May 31, 2018
Google-owned Waymo is adding as many as 62,000 Fiat Chrysler minivans to its autonomous fleet in an expanded collaboration announced by the companies on Thursday. Delivery of the Chrysler Pacifica minivans was expected to begin later this year, with the automaker also exploring the potential to build Waymo technology into a self-driving car it might add to its model line-up for consumers. "FCA is committed to bringing self-driving technology to our customers in a manner that is safe, efficient a ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CAR TECH
Putin, Abe speak to ISS astronauts from Kremlin

NASA awards $43M to US Small Businesses for Tech Research

Yoyager's Golden Record may paint humans in a confusing way

NASA, Space Station Partners Announce Future Mission Crew Members

CAR TECH
Watch live: SpaceX to launch SES-12 communications satellite

Gilmour Space prepares for suborbital hybrid rocket launch

Russia to Create Rocket Production Holding on Basis of Roscosmos

What really happened to that melted NASA Camera?

CAR TECH
Red Planet rover set for extreme environment workout

Why we won't get to Mars without teamwork

Curiosity Mars rover back on drill duty

Scientists Shrink Chemistry Lab to Seek Evidence of Life on Mars

CAR TECH
China upgrades spacecraft reentry and descent technology

China develops wireless systems for rockets

China's Queqiao satellite carries "large umbrella" into deep space

Russia May Help China Create International Cosmonauts Rehabilitation Center

CAR TECH
From ships to satellites: Scotland aims for the sky

Iridium Makes Maritime Industry History

Goonhilly lands 24m pounds investment enabling global expansion

Australian Space Agency Lost In Canberra

CAR TECH
Zn-InsP6 complex can enhance excretion of radioactive strontium from the body

Novel power meter opens the door for in-situ, real-time monitoring of high-power lasers

Study shows ceramics can deform like metals if sintered under an electric field

Japan to receive digital radar systems from Raytheon

CAR TECH
Linguists gather in L.A. to ponder the Language of ET

Kepler Begins 18th Observing Campaign with a Focus On Star Clusters

A simple mechanism could have been decisive for the development of life

Mars rocks may harbor signs of life from 4 billion years ago

CAR TECH
Pluto may be giant comet made up of comets, study says

SwRI scientists introduce cosmochemical model for Pluto formation

Jupiter: A New Perspective

OSL Optics to help unlock the secrets of Jupiter's Icy Moons









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.