Subscribe free to our newsletters via your
. 24/7 Space News .




CARBON WORLDS
New material captures carbon at half the energy cost
by Staff Writers
Berkeley CA (SPX) Mar 12, 2015


The diamine-appended metal-organic framework before and after binding of carbon dioxide. The view is a cross section through one of the pores of the MOF, showing diamine molecules (containing blue nitrogen atoms) attached to metal (manganese) atoms (green). Carbon dioxide molecules (grey carbon atoms with two red oxygen atoms) bind through a cooperative mechanism akin to a chain reaction along the pore surfaces. Some H atoms (white) are omitted for clarity. Image courtesy Thomas McDonald, Jarad Mason, Jeffrey Long/UC Berkeley. For a larger version of this image please go here.

UC Berkeley chemists have made a major leap forward in carbon-capture technology with a material that can efficiently remove carbon from the ambient air of a submarine as readily as from the polluted emissions of a coal-fired power plant.

The material then releases the carbon dioxide at lower temperatures than current carbon-capture materials, potentially cutting by half or more the energy currently consumed in the process. The released CO2 can then be injected underground, a technique called sequestering, or, in the case of a submarine, expelled into the sea.

"Carbon dioxide is 15 percent of the gas coming off a power plant, so a carbon-capture unit is going to be big," said senior author Jeffrey Long, a UC Berkeley professor of chemistry and faculty senior scientist at Lawrence Berkeley National Laboratory. "With these new materials, that unit could be much smaller, making the capital costs drop tremendously as well as the operating costs."

The material, a metal-organic framework (MOF) modified with nitrogen compounds called diamines, can be tuned to remove carbon dioxide from the room-temperature air of a submarine, for example, or the 100-degree (Fahrenheit) flue gases from a power plant.

"It would work great on something like the International Space Station," Long said.

Though power plants are not now required to capture carbon dioxide from their emissions, it will eventually be necessary in order to slow the pace of climate change caused by fossil-fuel burning. If the planet's CO2 levels rise much higher than they are today, it may even be necessary to remove CO2 directly from the atmosphere to make the planet livable.

Long and his colleagues describe how the new materials - diamine-appended MOFs - work in this week's issue of the journal Nature.

From flue gas to submarines
Power plants that capture CO2 today use an old technology whereby flue gases are bubbled through organic amines in water, where the carbon dioxide binds to amines. The liquid is then heated to 120-150 degrees Celsius (250-300 degrees Fahrenheit) to release the gas, after which the liquids are reused. The entire process is expensive: it consumes about 30 percent of the power generated, while sequestering underground costs an additional though small fraction of that.

The new diamine-appended MOFs can capture carbon dioxide at various temperatures, depending on how the diamines are synthesized, and releases the CO2 at only 50 C above the temperature at which CO2 binds, instead of the increase of 80-110 C required for aqueous liquid amines. Because MOFs are solid, the process also saves the huge energy costs of heating the water in which amines are dissolved.

MOFs are composites of metals - in this case, magnesium or manganese - with organic compounds that, together, form a porous structure with microscopic, parallel channels. Several years ago, Long and his lab colleagues developed a way to attach amines to the metals in an MOF to produce pores of sufficient diameter to allow CO2 to penetrate rapidly into the material.

They found that MOFs with attached diamines are very different from other carbon-capture materials, in that the CO2 seems to load into the material very quickly at a specific temperature and pressure, then come out quickly when the temperature is raised by 50 C. In the new paper, UC Berkeley graduate students Thomas McDonald and Jarad Mason, together with other co-workers, describe how this works.

"This material is unique in that it binds CO2 in a cooperative mechanism," Long said. "When the first CO2 starts to adsorb at a very specific pressure, all of a sudden it facilitates more CO2 adsorption, and the MOF rapidly saturates. That is really a different property from any other CO2 adsorbent based on amines.

"Then," he added, "if you raise the temperature by applying heat, at some temperature all the CO2 will come flooding off."

Long's team found that the diamines bind to the metal atoms of the MOF and then react with CO2 to form metal-bound ammonium carbamate species that completely line the interior channels of the MOF. At a sufficiently high pressure, one CO2 molecule binding to an amine helps other CO2 molecules bind next door, catalyzing a chain reaction as CO2polymerizes with diamine like a zipper running down the channel. Increasing the temperature by 50 degrees Celsius makes the reaction reverse just as quickly.

The pressure at which CO2 binds to the amines can be adjusted by changing the metal in the MOF. Long has already shown that some diamine-appended MOFs can bind CO2 at room temperature and CO2 levels as low as 300 parts per million.

The current atmospheric concentration of CO2 is now 400 parts per million (ppm), and policy-makers in many countries hope to reduce this below 350 ppm to avoid the most severe impacts of climate change, from increasingly severe weather events and sea level rise to global average temperature increases of 10 degrees Fahrenheit.

'We got lucky'
Last summer, Long co-founded a startup, Mosaic Materials, to use the new technology to radically reduce the cost of chemical separations, with plans in the works for a pilot study of CO2 separation from power plant emissions. This would involve creating columns containing millimeter-size pellets made by compressing a crystalline powder of MOFs.

"We're also hoping to develop something that might be tested in a submarine," Long said. That would pave the way for eventual scale-up to capturing CO2 from natural gas plants, which produce emissions containing about 5 percent CO2, to the higher concentrations of coal-fired power plants.

"We got lucky," he said. "We were just trying to find a simple way to attach these amines to our MOF surface, because they are one of the best compounds for selectively binding CO2 in the presence of water, which can be a problem in flue gas. And it just happens we got the right length in the amine to make these one-dimensional chains that bind CO2in a cooperative manner."

Long suggested as well that the findings may have relevance for the fixation of CO2 by plants, owing to striking structural similarities between the magnesium-based MOF and the naturally occurring CO2-fixing photosynthetic enzyme RuBisCO.

Long also received assistance from colleagues at Zhejiang University in Hangzhou, China; the University of Turin in Italy; the University of Minnesota in Minneapolis; the Universite Grenoble Alpes and the Centre National de la Recherche Scientifique in France; the Norwegian University of Science and Technology in Trondheim, Norway; and the Ecole Polytechnique Federale de Lausanne in Switzerland.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of California - Berkeley
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CARBON WORLDS
Novel crumpling method takes flat graphene from 2-D to 3-D
Urbana IL (SPX) Feb 19, 2015
Researchers at the University of Illinois at Urbana-Champaign have developed a unique single-step process to achieve three-dimensional (3D) texturing of graphene and graphite. Using a commercially available thermally activated shape-memory polymer substrate, this 3D texturing, or "crumpling," allows for increased surface area and opens the doors to expanded capabilities for electronics and bioma ... read more


CARBON WORLDS
Core work: Iron vapor gives clues to formation of Earth and moon

Application of laser microprobe technology to Apollo samples refines lunar impact history

NASA releases video of the far side of the Moon

US Issuing Licenses for Mineral Mining on Moon

CARBON WORLDS
Research Suggests Mars Once Had More Water than Earth's Arctic Ocean

Mars Colonization Edges Closer Thanks to MIT's Oxygen Factory

Opportunity Examining Odd Mars Rocks at Valley Overlook

Single Site on Mars Advanced for 2016 NASA Lander

CARBON WORLDS
Cheap yen, fading Fukushima fears lure Japan tourists

Dubai to build 'Museum of the Future'

Old-economy sectors are now tech, too: US study

Diamantino Sforza - Gentleman Farmer of Prince George's County

CARBON WORLDS
China at technical preparation stage for Mars, asteroid exploration

China's moon rover Yutu functioning but stationary

Argentina welcomes first Chinese satellite tracking station outside China

More Astronauts for China

CARBON WORLDS
US astronauts speed through spacewalk at orbiting lab

Watching Alloys Change from Liquid to Solid Could Lead to Better Metals

NASA Hopes to Continue Cooperation on ISS Until 2024

Russia to use International Space Station till 2024

CARBON WORLDS
Soyuz Installed at Baikonur, Expected to Launch Wednesday

Arianespace's Soyuz ready for next dual-satellite Galileo launch

Arianespace certified to ISO 50001 at Guiana Space Center

SpaceX launches two communications satellites

CARBON WORLDS
Scientists: Nearby Earth-like planet isn't just 'noise'

Exorings on the Horizon

Planet 'Reared' by Four Parent Stars

Planets Can Alter Each Other's Climates over Eons

CARBON WORLDS
Google gearing Android for virtual reality: report

Video game makers grapple with need for diversity

New paint makes tough self-cleaning surfaces

The rub with friction




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.