Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
New hybrid technology could bring 'quantum information systems'
by Emil Venere for Purdue News
West Lafayette IN (SPX) Nov 01, 2011


Structures called "metamaterials" and the merging of two technologies under development are promising the emergence of new "quantum information systems" far more powerful than today's computers. The concept hinges on using single photons - the tiny particles that make up light - for switching and routing in future computers that might harness the exotic principles of quantum mechanics. The image at left depicts a "spherical dispersion" of light in a conventional material, and the image at right shows the design of a metamaterial that has a "hyperbolic dispersion" not found in any conventional material, potentially producing quantum-optical applications. (Zubin Jacob)

The merging of two technologies under development - plasmonics and nanophotonics - is promising the emergence of new "quantum information systems" far more powerful than today's computers.

The technology hinges on using single photons - the tiny particles that make up light - for switching and routing in future computers that might harness the exotic principles of quantum mechanics.

The quantum information processing technology would use structures called "metamaterials," artificial nanostructured media with exotic properties.

The metamaterials, when combined with tiny "optical emitters," could make possible a new hybrid technology that uses "quantum light" in future computers, said Vladimir Shalaev, scientific director of nanophotonics at Purdue University's Birck Nanotechnology Center and a distinguished professor of electrical and computer engineering.

The concept is described in an article to be published Friday (Oct. 28) in the journal Science. The article will appear in the magazine's Perspectives section and was written by Shalaev and Zubin Jacob, an assistant professor of electrical and computer engineering at the University of Alberta, Canada.

"A seamless interface between plasmonics and nanophotonics could guarantee the use of light to overcome limitations in the operational speed of conventional integrated circuits," Shalaev said.

Researchers are proposing the use of "plasmon-mediated interactions," or devices that manipulate individual photons and quasiparticles called plasmons that combine electrons and photons.

One of the approaches, pioneered at Harvard University, is a tiny nanowire that couples individual photons and plasmons. Another approach is to use hyperbolic metamaterials, suggested by Jacob; Igor Smolyaninov, a visiting research scientist at the University of Maryland; and Evgenii Narimanov, an associate professor of electrical and computer engineering at Purdue. Quantum-device applications using building blocks for such hyperbolic metamaterials have been demonstrated in Shalaev's group.

"We would like to record and read information with single photons, but we need a very efficient source of single photons," Shalaev said. "The challenge here is to increase the efficiency of generation of single photons in a broad spectrum, and that is where plasmonics and metamaterials come in."

Today's computers work by representing information as a series of ones and zeros, or binary digits called "bits."

Computers based on quantum physics would have quantum bits, or "qubits," that exist in both the on and off states simultaneously, dramatically increasing the computer's power and memory. Quantum computers would take advantage of a strange phenomenon described by quantum theory called "entanglement." Instead of only the states of one and zero, there are many possible "entangled quantum states" in between one and zero.

An obstacle in developing quantum information systems is finding a way to preserve the quantum information long enough to read and record it. One possible solution might be to use diamond with "nitrogen vacancies," defects that often occur naturally in the crystal lattice of diamonds but can also be produced by exposure to high-energy particles and heat.

"The nitrogen vacancy in diamond operates in a very broad spectral range and at room temperature, which is very important," Shalaev said.

The work is part of a new research field, called diamond photonics. Hyperbolic metamaterials integrated with nitrogen vacancies in diamond are expected to work as efficient "guns" of single photons generated in a broad spectral range, which could bring quantum information systems, he said.

.


Related Links
Purdue
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
NIST compact frequency comb could go places
Washington DC (SPX) Oct 31, 2011
Laser frequency combs-extraordinarily precise tools for measuring frequencies (or colors) of light-have helped propel advances in timekeeping, trace gas detection and related physics research to new heights in the past decade. While typical lasers operate at only a single or handful of frequencies, laser frequency combs operate simultaneously at many frequencies, approaching a million for some c ... read more


CHIP TECH
Lunar Probe to search for water on Moon

Subtly Shaded Map of Moon Reveals Titanium Treasure Troves

NASA's Moon Twins Going Their Own Way

Titanium treasure found on Moon

CHIP TECH
Mars500 crew prepare to open the hatch

Opportunity Continues to Drive North

Opportunity Past 21 Miles of Driving! Will Spend Winter at Cape York

Scientists develope new way to determine when water was present on Mars and Earth

CHIP TECH
A global discussion: directions for space science research

NASA's NEEMO Mission Ending Early Due To Hurricane Rina

Explorer 1 The First US Explorer

NASA evacuates astronauts from deep-sea training

CHIP TECH
Aerospace officials confident in space docking despite degree of difficulty

China's first manual space docking hopefully 2012

China to conduct another manned space mission by 2012

China's satellite launch base upgraded ahead of Shenzhou-8 mission

CHIP TECH
Russian Progress space freighter undocks from ISS

Russia launches first supply ship for ISS after mishap

Russian space freighter leaves ISS

Station Crew Prepares For Progress Departure and New Arrivals

CHIP TECH
Vega getting ready for exploitation

MSU satellite orbits the Earth after early morning launch

NASA Launches Multi-Talented Earth-Observing Satellite

The Arianespace launcher family comes together in French Guiana

CHIP TECH
Three New Planets and a Mystery Object Discovered Outside Our Solar System

Dwarf planet sized up accurately as it blocks light of faint star

Herschel Finds Oceans of Water in Disk of Nearby Star

UH Astronomer Finds Planet in the Process of Forming

CHIP TECH
Radium likely cause of Tokyo hotspot: city office

High-quality white light produced by four-color laser source

No hands required as scientists achieve precise control of virtual flight

Google expands online bookstore to Canada




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement