. 24/7 Space News .
ICE WORLD
New Study Brings Antarctic Ice Loss Into Sharper Focus
by Pat Brennan
Pasadena CA (JPL) Feb 21, 2018

The flow of Antarctic ice, derived from feature tracking of Landsat imagery.

A NASA study based on an innovative technique for crunching torrents of satellite data provides the clearest picture yet of changes in Antarctic ice flow into the ocean. The findings confirm accelerating ice losses from the West Antarctic Ice Sheet and reveal surprisingly steady rates of flow from its much larger neighbor to the east.

The computer-vision technique crunched data from hundreds of thousands of NASA-U.S. Geological Survey Landsat satellite images to produce a high-precision picture of changes in ice-sheet motion.

The new work provides a baseline for future measurement of Antarctic ice changes and can be used to validate numerical ice sheet models that are necessary to make projections of sea level. It also opens the door to faster processing of massive amounts of data.

"We're entering a new age," said the study's lead author, cryospheric researcher Alex Gardner of NASA's Jet Propulsion Laboratory in Pasadena, California.

"When I began working on this project three years ago, there was a single map of ice sheet flow that was made using data collected over 10 years, and it was revolutionary when it was published back in 2011.

"Now we can map ice flow over nearly the entire continent, every year. With these new data, we can begin to unravel the mechanisms by which the ice flow is speeding up or slowing down in response to changing environmental conditions."

The innovative approach by Gardner and his international team of scientists largely confirms earlier findings, though with a few unexpected twists.

Among the most significant: a previously unmeasured acceleration of glacier flow into Antarctica's Getz Ice Shelf, on the southwestern part of the continent - likely a result of ice-shelf thinning.

Speeding up in the west, steady flow in the east
The research, published in the journal "The Cryosphere," also identified the fastest speed-up of Antarctic glaciers during the seven-year study period. The glaciers feeding Marguerite Bay, on the western Antarctic Peninsula, increased their rate of flow by 1,300 to 2,600 feet (400 to 800 meters) per year, probably in response to ocean warming.

Perhaps the research team's biggest discovery, however, was the steady flow of the East Antarctic Ice Sheet. During the study period, from 2008 to 2015, the sheet had essentially no change in its rate of ice discharge - ice flow into the ocean. While previous research inferred a high level of stability for the ice sheet based on measurements of volume and gravitational change, the lack of any significant change in ice discharge had never been measured directly.

The study also confirmed that the flow of West Antarctica's Thwaites and Pine Island glaciers into the ocean continues to accelerate, though the rate of acceleration is slowing.

In all, the study found an overall ice discharge for the Antarctic continent of 1,929 gigatons per year in 2015, with an uncertainty of plus or minus 40 gigatons. That represents an increase of 36 gigatons per year, plus or minus 15, since 2008. A gigaton is one billion tons.

The study found that ice flow from West Antarctica - the Amundsen Sea sector, the Getz Ice Shelf and Marguerite Bay on the western Antarctic Peninsula - accounted for 89 percent of the increase.

Computer vision
The science team developed software that processed hundreds of thousands of pairs of images of Antarctic glacier movement from Landsats 7 and 8, captured from 2013 to 2015.

These were compared to earlier radar satellite measurements of ice flow to reveal changes since 2008.

"We're applying computer vision techniques that allow us to rapidly search for matching features between two images, revealing complex patterns of surface motion," Gardner said.

Instead of researchers comparing small sets of very high-quality images from a limited region to look for subtle changes, the novelty of the new software is that it can track features across hundreds of thousands of images per year - even those of varying quality or obscured by clouds - over an entire continent.

"We can now automatically generate maps of ice flow annually - a whole year - to see what the whole continent is doing," Gardner said.

The new Antarctic baseline should help ice sheet modelers better estimate the continent's contribution to future sea level rise.

"We'll be able to use this information to target field campaigns, and understand the processes causing these changes," Gardner said.

"Over the next decade, all this is going to lead to rapid improvement in our knowledge of how ice sheets respond to changes in ocean and atmospheric conditions, knowledge that will ultimately help to inform projections of sea level change."


Related Links
Earth Research Findings
Beyond the Ice Age


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ICE WORLD
Coping with climate stress in Antarctica
Davis CA (SPX) Jan 19, 2018
Some Antarctic fish living in the planet's coldest waters are able to cope with the stress of rising carbon dioxide levels the ocean. They can even tolerate slightly warmer waters. But they can't deal with both stressors at the same time, according to a study from the University of California, Davis. The study, published recently in the journal Global Change Biology, of emerald rockcod is the first to show that Antarctic fishes may make tradeoffs in their physiology and behavior to cope with ocean ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ICE WORLD
Russian Resupply Ship Delivers Three Tons of Cargo

NASA's Continued Focus on Returning U.S. Human Spaceflight Launches

NASA Acting Administrator's Statement on FY 2019 Budget Proposal

US wants to privatize International Space Station: report

ICE WORLD
140 successful tests and several "firsts" for Vinci, the engine for Ariane 6

Russia launches cargo spacecraft after aborted liftoff

Soyuz launch to resupply ISS aborted seconds before liftoff

What's next for SpaceX?

ICE WORLD
Leaky Atmosphere Linked To Lightweight Planet

Mars Opportunity Rover Energy Levels Improve

A Piece of Mars is Going Home

Danish architect envisions life on Mars

ICE WORLD
Long March rockets on ambitious mission in 2018

Chinese taikonauts maintain indomitable spirit in space exploration: senior officer

China launches first shared education satellite

China's first X-ray space telescope put into service after in-orbit tests

ICE WORLD
Airbus and human spaceflight: from Spacelab to Orion

Iridium Announces First Land-Mobile Service Providers for Iridium Certus

2018 in Space - Progress and Promise

UK companies seek cooperation with Russia in space technologies

ICE WORLD
Why bees soared and slime flopped as inspirations for systems engineering

Breaking local symmetry: Why water freezes but silica forms a glass

Friction found where there should be none: In superfluids near absolute zero

Last NASA Communications Satellite of its Kind Joins Fleet

ICE WORLD
Asteroid 'time capsules' may help explain how life started on Earth

Deep-sea fish use hydrothermal vents to incubate eggs

Kepler Scientists Discover Almost 100 New Exoplanets

'Oumuamua has been tumbling about the galaxy for a billion years

ICE WORLD
New Horizons captures record-breaking images in the Kuiper Belt

Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.