Subscribe free to our newsletters via your
. 24/7 Space News .




CARBON WORLDS
New Fracture Resistance Mechanisms Provided By Graphene
by Staff Writers
Tucson AZ (SPX) Apr 18, 2011


File image.

A team of researchers from the University of Arizona and Rensselaer Polytechnic Institute have increased the toughness of ceramic composites by using graphene reinforcements that enable new fracture resistance mechanisms in the ceramic.

The research, lead by Assistant Professor Erica L. Corral from the Materials Science and Engineering Department at the University of Arizona in Tucson, and Professor Nikhil Koratkar from the Department of Mechanical, Aerospace and Nuclear Engineering at Rensselaer Polytechnic Institute in Troy, New York, was recently published in ACS Nano, the monthly journal of the American Chemical Society.

"Our work on graphene ceramic composites is the first of its kind in the open literature and shows mechanisms for toughening using two-dimensional graphene sheets that have yet to be seen in ceramic composites," said Corral.

"We have significantly increased the toughness of a ceramic and made the first observations of graphene that arrest crack propagation and force the crack to change directions in not just two but also three dimensions."

These observations will lead to a new approach for composite design using graphene in ceramics that has not been possible using conventional fiber reinforcements, says Corral.

"The high surface area and unique two-dimensional sheet geometry seem to be better at arresting crack growth in ceramics over conventional fibers that are one-dimensional reinforcements," she said.

"This is a classic example of highly successful interdisciplinary research across universities that was unheard of 15 or 20 years ago, but is now becoming critically important if we are to continue to make breakthrough discoveries and maintain the competiveness of the United States in the 21st century," said Prof.

Koratkar of the Rensselaer Polytechnic Institute. Koratkar met Dr. Corral at a National Science Foundation-sponsored nanoscience conference where she delivered a talk on her work in carbon nanotube ceramic composites.

Koratkar was impressed with Corral's presentation, and approached her regarding the possibility of exploring the use of graphene to increase toughening in brittle ceramics. "Over the next year we leveraged my lab's expertise in the synthesis of bulk quantities of graphene platelets and the expertise of Corral's group in ceramic composite fabrication and testing," Koratkar said.

"Our results published in ACS Nano show the tremendous promise that graphene shows in toughening ceramics that are notoriously brittle and prone to failure. This work could open up an entirely new graphene ceramic nanocomposites field of study," he says.

This is the first published work describing the use of graphene nanofiller to reinforce ceramics and will appear in the journal ACS Nano.

This discovery - measured to increase fracture resistance of the resulting ceramic nanocomposite by over 200 percent - could potentially be used to enhance toughness for a range of ceramic materials, enabling their widespread use in high-performance, structural applications that require operating temperatures greater than 1,000 degrees Celsius while maintaining structural integrity.

The research report, "Toughening in Graphene Ceramic Composites" is co-authored by Luke S. Walker, Victoria R. Marotto and Erica L. Corral of the University of Arizona; and Mohammad A. Rafiee and Nikhil Koratkar of the Rensselaer Polytechnic Institute. Funding support from the State of Arizona, the U.S. Office of Naval Research and the U.S. National Science Foundation Early Faculty Career Award is acknowledged.
.


Related Links
University of Arizona College of Engineering
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CARBON WORLDS
Climate Change From Black Carbon Depends On Altitude
Palo Alto, CA (SPX) Apr 18, 2011
Scientists have known for decades that black carbon aerosols add to global warming. These airborne particles made of sooty carbon are believed to be among the largest man-made contributors to global warming because they absorb solar radiation and heat the atmosphere. New research from Carnegie's Long Cao and Ken Caldeira, along with colleagues George Ban-Weiss and Govindasamy Bala, quantif ... read more


CARBON WORLDS
BRP To Contribute To Canadian Moon And Mars Exploration Programs

Naveen Jain Co-Founder And Chairman Of Moon Express

Project Morpheus To Begin Testing At NASA's Johnson Space Center

NASA Announces Winners Of 18th Annual Great Moonbuggy Race

CARBON WORLDS
Mars Rover's 'Gagarin' Moment Applauded Exploration

Mars Flight Possible After 2035

Several Drives This Week Put Opportunity Over 17-Mile Mark

Next Mars Rover Nears Completion

CARBON WORLDS
NASA Awards Next Set Of Commercial Crew Development Agreements

LockMart Commends Congressional Action On NASA Spacecraft

NASA spared cuts in US spending bill passage

NASA mission control named for Chris Kraft

CARBON WORLDS
Asia's star ever brighter in space

What Future for Chang'e-2

China setting up new rocket production base

China's Tiangong-1 To Be Launched By Modified Long March II-F Rocket

CARBON WORLDS
Roberto Vittori's DAMA Mission To ISS

Northrop Grumman To Test Heat Management System On ISS

The MELFI Shuffle: Contingency Planning For Preserving Samples

Space Debris No Threat To ISS

CARBON WORLDS
India Starts Countdown For Launch Of Three Satellites

Kazakh Space Launch Project Delayed Until 2017

Putin Urges Ukraine To Join New Russian Space Center Project

Arianespace to launch ASTRA 2E Satellite

CARBON WORLDS
Titan-Like Exoplanets

A New Way To Find Planets

Telescope Ferrets Out Planet-Hunting Targets

White Dwarfs Could Be Fertile Ground For Other Earths

CARBON WORLDS
Researchers Discover The Cause Of Irradiation-Induced Instability In Materials Surfaces

ITT's Commercial Imaging Payload Passes Major Milestone

Eco-Friendly Treatment For Blue Jeans Offers Alternative To Controversial Sandblasting

Japan's TEPCO pours radiation-absorbing mineral in sea




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement