. 24/7 Space News .
TECTONICS
Nepal earthquake was less intense than feared
by Staff Writers
San Francisco CA (SPX) Oct 29, 2015


The largest and most destructive landslide resulting from the April earthquake was the Langtang landslide, which began as a snow and ice avalanche. Debris became airborne off a 500-meter-tall cliff, reaching velocities of 100 meters per second. Photo reproduced from USAID-supported work by the USGS. For a larger version of this image please go here.

The April 2015 Gorkha earthquake that struck Nepal produced less damage and weaker shaking than might be expected from a magnitude 7.8 quake in the area, according to a group of ten new articles published this week in Seismological Research Letters.

In a region of major faulting and massive tectonic plate collisions, with an especially dense population centered on the country's capital of Kathmandu, seismologists had expected the worst from a major earthquake. And the quake and its major aftershocks did cause more than 8,000 fatalities, 22,000 injuries and hundreds of thousands of collapsed or damaged buildings. But the damage was not as catastrophic as expected, said U.S. Geological Service geophysicist Susan Hough, guest editor of the Gorkha focus section papers.

"The world community of earthquake professionals expected an earthquake like this directly beneath Nepal would take a far greater toll on property and lives. So it poses a major challenge to understand and explain the shaking from the earthquake," said Hough.

Hough and others conclude that the shaking was less damaging than expected because of how the Kathmandu valley's "bowl" of ancient lake bed sediments responded. "We know that valleys like this greatly amplify shaking from small and moderate earthquakes, but in very large earthquakes, something that we call a nonlinear effect kicks in," Hough said.

"We can think about the valley as a bowl of jello that shakes, but in a very big earthquake a valley is more like a bowl of sand," she explained. "When shaken strongly, the grains aren't able to transmit energy in the same way that a solid rock does."

Other papers in the SRL focus section map out the main earthquake's rupture within the Himalayan area's complex fault system, concluding that the fault broke adjacent to the rupture from a 1934 magnitude 8.0 -8.4 earthquake. The historical and geologic record suggests that much larger earthquakes have occurred both east and west of the fault.

Scientists studying the earthquake combined data from the sparse seismic stations within Nepal with global observations and swift fieldwork. In some cases, the data were collected by cutting-edge "earthquake science from space," such as the before-and-after satellite imagery of the region, reported in a study by Jet Propulsion Laboratory researcher Sang-Ho Yun and colleagues.

Newspaper and other accounts provided a wealth of information that Earth Observatory of Singapore researcher Stacey Martin and his colleagues considered in detail to map out the severity of shaking throughout Nepal and neighboring countries.

In other cases, researchers were quickly out on to the precarious roads of Nepal to survey effects of the earthquake in Kathmandu as well as rural villages . Robb Moss of Cal Poly Pomona and his colleagues examined soil liquefaction within Kathmandu valley and several key landslide sites, and University of Nevada researcher Steven Angster and his team confirmed initial indications that the fault rupture did not reach the surface.

Eric Thompson, Brian Collins and Randy Jibson of the USGS collected extensive data on landslides, one of the largest causes of infrastructure damage from the earthquake. Thompson said that the scientists consulted satellite images and news reports and undertook extensive helicopter surveillance to assess the severity and locations of landslides throughout the mountainous region.

A study led by Remy Bossu of the European Mediterranean Seismological Centre suggests that smartphone apps and Twitter also played a unique role in collecting information about the earthquake and especially its aftershocks.

Bossu and colleagues analyzed how the LastQuake smartphone app gathered eyewitness accounts of the earthquake and provided hazard updates, using thumbnail images instead of more elaborate text surveys to collect information from its users. With this input from the app users, LastQuake was able to publish a map of the earthquake's epicenter within minutes of the mainshock.

Bossu and colleagues say the two-way, real-time communication channel offered by apps like LastQuake can be useful to understanding the extent of an earthquake, as well as offer rapid advice to people to avoid the immediate risks from shaking.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Seismological Society of America
Tectonic Science and News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECTONICS
Triggered earthquakes give insight into changes below Earth's surface
Boston MA (SPX) Oct 21, 2015
It is well known that an earthquake in one part of the world can trigger others thousands of kilometers away. But in a paper published in the journal Science Advances, researchers reveal that these triggered earthquakes are just one outward sign of far more widespread changes taking place below the Earth's surface. Earthquakes can fundamentally change the elastic properties of the Earth's ... read more


TECTONICS
All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

Study reveals origin of organic matter in Apollo lunar samples

Russia touts plan to land a man on the Moon by 2029

TECTONICS
Martian skywatchers provide insight on atmosphere, protect orbiting hardware

Landing site recommended for ExoMars 2018

You too can learn to farm on Mars

The Martian Astrobiologist

TECTONICS
Charles Elachi to retire as JPL Director

From science fiction to reality - sonic tractor beam invented

Study solves mysteries of Voyager 1's journey into interstellar space

NASA Marks Completion of Test Version of Key SLS Propulsion System

TECTONICS
The Last Tiangong

China aims to go deeper into space

Latest Mars film bespeaks potential of China-U.S. space cooperation

Exhibition on "father of Chinese rocketry" opens in U.S.

TECTONICS
NASA astronauts get workout in marathon spacewalk

Between the Ears: International Space Station Examines the Human Brain

High-Tech Methods Study Bacteria on the International Space Station

Astronaut Scott Kelly to break US spaceflight record

TECTONICS
Initial launcher assembly is completed for Arianespace's Vega mission with LISA Pathfinder

Ariane 5 is delivered for Arianespace's sixth heavy-lift mission of 2015

ORBCOMM Announces Launch Window For Second OG2 Mission

10th Anniversary of the Final Titan

TECTONICS
Spirals in dust around young stars may betray presence of massive planets

The Exoplanet Era

Scientists Predict that Rocky Planets Formed from "Pebbles"

NASA's K2 Finds Dead Star Vaporizing a Mini 'Planet'

TECTONICS
Ants: Both solid-like and liquid-like

Coating cancels acoustic scattering from odd-shaped objects

Nanoquakes probe new 2-dimensional material

Scientists gain insight into origin of tungsten-ditelluride's magnetoresistance









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.