. | . |
Nature Photonics: Light source for quicker computer chips by Staff Writers Karlsruher, Germany (SPX) Apr 25, 2016
Worldwide growing data volumes make conventional electronic processing reach its limits. Future information technology is therefore expected to use light as a medium for quick data transmission also within computer chips. Researchers under the direction of KIT have now demonstrated that carbon nanotubes are suited for use as on-chip light source for tomorrow's information technology, when nanostructured waveguides are applied to obtain the desired light properties. The scientists now present their results in Nature Photonics. DOI: 10.1038/NPHOTON. 2016.70 On the large scale, data transmission by light has long become a matter of routine: Glass fiber cables as light waveguides transmit telephone and internet signals, for instance. For using the advantages of light, i.e. speed and energy efficiency, also on the small scale of computer chips, researchers of KIT have made an important step from fundamental research towards application. By the integration of smallest carbon nanotubes into a nanostructured waveguide, they have developed a compact miniaturized switching element that converts electric signals into clearly defined optical signals. "The nanostructures act like a photonic crystal and allow for customizing the properties of light from the carbon nanotube," Felix Pyatkov and Valentin Futterling, the first authors of the study of KIT's Institute of Nanotechnology, explain. "In this way, we can generate narrow-band light in the desired color on the chip." Processing of the waveguide precisely defines the wavelength at which the light is transmitted. By engravings using electron beam lithography, the waveguides of several micrometers in length are provided with finest cavities of a few nanometers in size. They determine the waveguide's optical properties. The resulting photonic crystals reflect the light in certain colors, a phenomenon observed in nature on apparently colorful butterfly wings. As novel light sources, carbon nanotubes of about 1 micrometer in length and 1 nanometer in diameter are positioned on metal contacts in transverse direction to the waveguide. At KIT, a process was developed, by means of which the nanotubes can be integrated specifically into highly complex structures. The researchers applied the method of dielectrophoresis for deposition of carbon nanotubes from the solution and their arrangement vertically to the waveguide. This way of separating particles using inhomogeneous electric fields was originally used in biology and is highly suited to deposit nanoscaled objects on carrier materials. The carbon nanotubes integrated into the waveguide act as a small light source. When electric voltage is applied, they produce photons. The compact electricity/light signal converter presented now meets the requirements of the next generation of computers that combine electronic components with nanophotonic waveguides. The signal converter bundles the light about as strongly as a laser and responds to variable signals with high speed. Already now, the optoelectronic components developed by the researchers can be used to produce light signals in the gigahertz frequency range from electric signals. Among the leading researchers involved in the project were Ralph Krupke, who conducts research at the KIT Institute of Nanotechnology and at the Institute of Materials Science of TU Darmstadt, Wolfram H.P. Pernice, who moved from the KIT to the University of Munster one year ago, and Manfred M. Kappes, Institute of Physical Chemistry and Institute of Nanotechnology of KIT. The project was funded by the Science and Technology of Nanosystems (STN) programme of the Helmholtz Association. It is aimed at studying nanosystems of unique functionality and the potential of materials of a few nanometers in structural size. The Volkswagen Foundation financed a Ph.D. student position for the research project. In addition, the project was supported by the Karlsruhe Nano Micro Facility (KNMF) platform. Research paper: Felix Pyatkov, Valentin Futterling, Svetlana Khasminskaya, Benjamin Flavel, Frank Hennrich, Manfred M. Kappes, Ralph Krupke, and Wolfram H.P. Pernice: Cavity enhanced light emission from electrically driven carbon nanotubes. Nature Photonics, DOI: 10.1038/NPHOTON.2016.70
Related Links Karlsruher Institut fur Technologie (KIT) Computer Chip Architecture, Technology and Manufacture Nano Technology News From SpaceMart.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |