Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
Nanotech Yields Major Advance In Heat Transfer And Cooling Technologies
by Staff Writers
Corvallis, OR (SPX) Jun 11, 2010


This nanoscale-level coating of zinc oxide on top of a copper plate holds the potential to dramatically increase heat transfer characteristics and lead to a revolution in heating and cooling technology, according to experts at Oregon State University and the Pacific Northwest National Laboratory. (Photo courtesy of Oregon State University)

Researchers at Oregon State University and the Pacific Northwest National Laboratory have discovered a new way to apply nanostructure coatings to make heat transfer far more efficient, with important potential applications to high tech devices as well as the conventional heating and cooling industry.

These coatings can remove heat four times faster than the same materials before they are coated, using inexpensive materials and application procedures.

The discovery has the potential to revolutionize cooling technology, experts say.

The findings have just been announced in the International Journal of Heat and Mass Transfer, and a patent application has been filed.

"For the configurations we investigated, this approach achieves heat transfer approaching theoretical maximums," said Terry Hendricks, the project leader from the Pacific Northwest National Laboratory. "This is quite significant."

The improvement in heat transfer achieved by modifying surfaces at the nanoscale has possible applications in both micro- and macro-scale industrial systems, researchers said. The coatings produced a "heat transfer coefficient" 10 times higher than uncoated surfaces.

Heat exchange has been a significant issue in many mechanical devices since the Industrial Revolution.

The radiator and circulating water in an automobile engine exist to address this problem. Heat exchangers are what make modern air conditioners or refrigerators function, and inadequate cooling is a limiting factor for many advanced technology applications, ranging from laptop computers to advanced radar systems.

"Many electronic devices need to remove a lot of heat quickly, and that's always been difficult to do," said Chih-hung Chang, an associate professor in the School of Chemical, Biological and Environmental Engineering at Oregon State University. "This combination of a nanostructure on top of a microstructure has the potential for heat transfer that's much more efficient than anything we've had before."

There's enough inefficiency in heat transfer, for instance, that for water to reach its boiling point of 100 degrees centigrade, the temperature of adjacent plates often has to be about 140 degrees centigrade. But with this new approach, through both their temperature and a nanostructure that literally encourages bubble development, water will boil when similar plates are only about 120 degrees centigrade.

To do this, heat transfer surfaces are coated with a nanostructured application of zinc oxide, which in this usage develops a multi-textured surface that looks almost like flowers, and has extra shapes and capillary forces that encourage bubble formation and rapid, efficient replenishment of active boiling sites.

In these experiments, water was used, but other liquids with different or even better cooling characteristics could be used as well, the researchers said. The coating of zinc oxide on aluminum and copper substrates is inexpensive and could affordably be applied to large areas.

Because of that, this technology has the potential not only to address cooling problems in advanced electronics, the scientists said, but also could be used in more conventional heating, cooling and air conditioning applications. It could eventually find its way into everything from a short-pulse laser to a home air conditioner or more efficient heat pump systems. Military electronic applications that use large amounts of power are also likely, researchers said.

The research has been supported by the Army Research Laboratory. Further studies are being continued to develop broader commercial applications, researchers said.

"These results suggest the possibility of many types of selectively engineered, nanostructured patterns to enhance boiling behavior using low cost solution chemistries and processes," the scientists wrote in their study. "As solution processes, these microreactor-assisted, nanomaterial deposition approaches are less expensive than carbon nanotube approaches, and more importantly, processing temperatures are low."

.


Related Links
Oregon State University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Creating Customized Nanofabrics
Cambridge MA (SPX) Jun 07, 2010
In Nature, cells and tissues assemble and organize themselves within a matrix of protein fibers that ultimately determines their structure and function, such as the elasticity of skin and the contractility of heart tissue. These natural design principles have now been successfully replicated in the lab by bioengineers at the Wyss Institute for Biologically Inspired Engineering and the Scho ... read more


NANO TECH
NASA Langley to Break Ground on Hydro Impact Basin

The Earth And Moon Formed Later Than Previously Thought

Old Moon Rover Beams Surprising Laser Flashes To Earth

MSU Robot Digs Most Moon Dirt

NANO TECH
Radar system tested for Mars rover landing

Mapping Project Consistent With Huge Historic Seas On Mars

Detailed Martian Scenes In New Images From Mars Orbiter

Mars500 - Eighteen Months In Isolation

NANO TECH
Continued Development On 18 Small Business Tech Transfer Projects

ESA Astronauts At ILA In Berlin

Doctor Needed In Antarctica

A Chance To Name Europe's Next Astronaut Mission

NANO TECH
China eyes Argentina for space antenna

Seven More For Shenzhou

China Signs Up First Female Astronauts

China To Launch Second Lunar Probe This Year

NANO TECH
Russian Mission Control Raises ISS Orbit

ISS Orbit Adjusted Prior To Soyuz Spacecraft Docking

ISS Expedition 23 lands safely in Kazakhstan

China May Become Space Station Partner

NANO TECH
South Korea Delays Rocket Launch

SpaceX Achieves Orbital Bullseye With Inaugural Flight Of Falcon 9 Rocket

Pratt and Whitney Rocketdyne Celebrates 50 Years

Space Industry Leaders And Astronauts Congratulate SpaceX

NANO TECH
Exoplanet Caught On The Move

'Out Of Whack' Planetary System

Weird Orbits Of Neighbors Can Make 'Habitable' Planets Not So Habitable

Get It While it's Hot! Star Devours Planet

NANO TECH
Second Life creator Linden Lab laying off staff

Zynga launches new Facebook game, 'FrontierVille'

Asian computer firms betting on a 3D future

Integral Systems Awarded Contract To Support LS1300




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement