Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
Nanoscale Probe Reveals Interactions Between Surfaces And Single Molecules
by Mike Rodewald
Los Angeles CA (SPX) Nov 18, 2010


Simultaneously acquired images and polarizability maps of four different families of molecules, including single-molecule switches (bottom panels), which can be both manipulated and imaged using the scanning tunneling microscope (STM).

As electronics become smaller and smaller the need to understand nanoscale phenomena becomes greater and greater. Because materials exhibit different properties at the nanoscale than they do at larger scales, new techniques are required to understand and to exploit these new phenomena.

A team of researchers led by Paul Weiss, UCLA's Fred Kavli Chair in NanoSystems Sciences, has developed a tool to study nanoscale interactions. Their device is a dual scanning tunneling and microwave-frequency probe that is capable of measuring the interactions between single molecules and the surfaces to which the molecules are attached.

"Our probe can generate data on the physical, chemical, and electronic interactions between single molecules and substrates, the contacts to which they are attached. Just as in semiconductor devices, contacts are critical here," remarked Weiss, who directs UCLA's California NanoSystems Institute and is also a distinguished professor of chemistry and biochemistry and materials science and engineering.

The team, which also includes theoretical chemist Mark Ratner from Northwestern University and synthetic chemist James Tour from Rice University, published their findings in the peer-reviewed journal ACS Nano.

For the past 50 years, the electronics industry has endeavored to keep up with Moore's Law, the prediction made by Gordon E. Moore in 1965 that the size of transistors in integrated circuits would halve approximately every two years.

The pattern of consistent decrease in the size of electronics is approaching the point where transistors will have to be constructed at the nanoscale to keep pace. However, researchers have encountered obstacles in creating devices at the nanoscale because of the difficulty of observing phenomena at such minute sizes.

The connections between components are a vital element of nanoscale electronics. In the case of molecular devices, polarizability measures the extent to which electrons of the contact interact with those of the single molecule.

Two key aspects of polarizability measurements are the ability to do the measurement on a surface with subnanometer resolution, and the ability to understand and to control molecular switches in both the on and off states.

To measure the polarizability of single molecules the research team developed a probe capable of simultaneous scanning tunneling microscopy (STM) measurements and microwave difference frequency (MDF) measurements. With the MDF capabilities of the probe, the team was able to locate single molecule switches on substrates, even when the switches were in the off state, a key capability lacking in previous techniques.

Once the team located the switches, they could use the STM to change the state to on or off and to measure the interactions in each state between the single molecule switches and the substrate.

The new information provided by the team's probe focuses on what the limits of electronics will be, rather than targeting devices for production. Also, because the probe is capable of a wide variety of measurements - including physical, chemical and electronic - it could enable researchers to identify submolecular structures in complex biomolecules and assemblies.

.


Related Links
UCLA
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Nanoscale Light Sensor Compatible With Etch-A-Sketch Nanoelectronic Platform
Pittsburgh PA (SPX) Nov 16, 2010
University of Pittsburgh researchers have created a nanoscale light sensor that can be combined with near-atomic-size electronic circuitry to produce hybrid optic and electronic devices with new functionality. The team, which also involved researchers from the University of Wisconsin at Madison, reports in Nature Photonics that the development overcomes one of nanotechnology's most dauntin ... read more


NANO TECH
Mining On The Moon Is A Not-So-Distant Possibility

New Analysis Explains Formation Of Lunar Farside Bulge

New type of moon rock identified

Moon Express Enters $30 Million Google Lunar X PRIZE Competition

NANO TECH
IceBite Blog: Setting Up An IceBreaker

Camera On Curiosity's Arm Will Magnify Clues In Rocks

Breaking The Ice In Antarctica

Driving Through A Field Of Small Craters

NANO TECH
TakeMeToSpace.com Launches Space Tourism

Soyuz Returns To Earth Earlier Than Planned

Russia To Conduct Half Of Carrier Rocket Launches From Far East By 2020

Republicans could scale back US science budgets

NANO TECH
Two Telescopes For Tiangong

Chinese Female Taikonaut Identified

Tiangong Space Lab Spurs China Space PR Blitz

China Announces Success Of Chang'e-2 Lunar Probe Mission

NANO TECH
ISS crew to return to Earth early

German Robotic Arm Completes Its Five-Year ISS Mission

ISS Crew Completes Spacewalk

Space Station Spacewalk Under Russian Program Planned For Today

NANO TECH
Ball Aerospace's First Standard Interface Vehicle Set To Launch

ILS Proton Launches Lightsquared Satellite

Russia Launches Advanced US Telecom Satellite

NASA plans Alaska satellite launch

NANO TECH
First glimpse of a planet from another galaxy

Eartly Dust Tails Point To Alien Worlds

U.K. astronomers see 'snooker' star system

e2v To Develop Image Sensors For PLATO Exoplanet Mission

NANO TECH
Yahoo! Connected TV store to start selling widgets

Laser camera 'sees' around corners

Sonar System Inspired By Dolphins

U.S. Army upgrades force tracking system




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement