Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
Nanoparticles Break the Symmetry of Light
by Staff Writers
Vienna, Austria (SPX) Oct 07, 2014


Light hits a gold particle, which then emits light into a glass fibre - into only one direction.

Nanoparticles can emit light into ultra-thin glass fibres. Physicists at the Vienna University of Technology have now managed to select the direction of the light using an unusual kind of coupling between spin and the direction of propagation.

How can a beam of light tell the difference between left and right? At the Vienna University of Technology (TU Wien) tiny particles have been coupled to a glass fibre. The particles emit light into the fibre in such a way that it does not travel in both directions, as one would expect. Instead, the light can be directed either to the left or to the right.

This has become possible by employing a remarkable physical effect - the spin-orbit coupling of light. This new kind of optical switch has the potential to revolutionize nanophotonics. The researchers have now published their work in the journal "Science".

Gold Nanoparticles on Glass Fibres
When a particle absorbs and emits light, this light is not just emitted into one direction. "A particle in free space will always emit as much light into one particular direction as it emits into the opposite direction", says Professor Arno Rauschenbeutel (TU Wien).

His team has now succeeded in breaking this symmetry of emission using gold nanoparticles coupled to ultra-thin glass fibres. The incident laser light determines whether the light emitted by the particle travels left or right in the glass fibre.

Bicycles and Airplane Propellers
This is only possible because light has an intrinsic angular momentum, the spin. Similar to a pendulum which can swing in one particular plane or move in circles, a light wave can have different directions of oscillation. If it has a well-defined vibrational direction, it is called a "polarized wave".

"A simple plane wave has the same polarization everywhere", says Arno Rauschenbeutel, "but when the intensity of the light changes locally, the polarization changes too."

Usually, the light oscillates in a plane perpendicular to its direction of propagation. If the oscillation is circular, this is similar to the motion of an airplane propeller. Its rotational axis - corresponding to the spin - points into the direction of propagation. But light moving through ultra-thin glass fibres has very special properties.

Its intensity is very high inside the glass fibre, but it rapidly decreases outside the fibre. "This leads to an additional field component in the direction of the glass fibre", says Arno Rauschenbeutel. The rotational plane of the light wave pivots by 90 degrees. "Then, the direction of propagation is perpendicular to the spin, just like a bicycle, moving into a direction which is perpendicular to the axes of the wheels."

By checking the wheels' direction of rotation - clockwise or counter-clockwise - we can tell whether a bicycle moves right or left when looking at it from the side. It is exactly the same with the beams of light in the ultra-thin glass fibre.

The sense of rotation of the light field is coupled to the direction of motion. This kind of coupling is a direct consequence of the glass fibre geometry and the laws of electrodynamics. The effect is called "spin-orbit-coupling of light".

Coupling Rotation and the Direction of Motion
When a particle that is coupled to the glass fibre is irradiated with a laser in such a way that it emits light of a particular sense of rotation, the emitted light will thus propagate into just one particular direction inside the glass fibre - either to the left or to the right.

This effect has now been demonstrated using a single gold nanoparticle on a glass fibre. The fibre is 250 times thinner than a human hair; the diameter of the gold particle is even four times less. Both the diameter of the fibre and the particle are even smaller than the wavelength of the emitted light.

"This new technology should be easily made available in commercial applications. Already now, the whole experiment fits into a shoebox", says Arno Rauschenbeutel. "The method could be applied to integrated optical circuits. Such systems may one day replace the electronic circuits we are using today."

.


Related Links
Vienna University of Technology
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





NANO TECH
Penn Team Studies Nanocrystals by Passing Them Through Tiny Pores
Philadelphia PA (SPX) Oct 03, 2014
An interdisciplinary team of University of Pennsylvania researchers has now applied a cutting-edge technique for rapid gene sequencing toward measuring other nanoscopic structures. By passing nanoscale spheres and rods through a tiny hole in a membrane, the team was able to measure the electrical properties of those structures' surfaces. Their findings suggest new ways of using this techni ... read more


NANO TECH
Solving the mystery of the 'man in the moon'

Origin of moon's 'ocean of storms' revealed

'Man in the Moon' was born from lava - scientists

Turning the Moon into a cosmic ray detector

NANO TECH
NASA Parachute Engineers Have Appetite for Destruction

Russian Scientists Develop Mechanism for Rover's Descent to Mars

NYT says it's sorry for cartoon mocking India's Mars mission

Russia May Send Repeat Mission to Martian Moon Phobos in 2023

NANO TECH
Richard Branson says commercial space flight almost here

This company is fighting NASA to bring people to space

"Dream Chaser" Chases Its Dream

Virgin Galactic could soon begin trips to space

NANO TECH
China Successfully Orbits Experimental Satellite

China's first space lab in operation for over 1000 days

China Exclusive: Mars: China's next goal?

Astronauts eye China's future space station

NANO TECH
Alexander Gerst set for spacewalk

Wiseman and Gerst Complete First Spacewalk of Expedition 41

US, German astronauts finish spacewalk to maintain ISS

Expedition 41 Preps for First of Three October Spacewalks

NANO TECH
Europe sat-nav launch glitch linked to frozen pipe

Proton Failure Review Board Concludes Investigation

Arianespace's lightweight Vega launcher is readied for its mission with the European IXV spaceplane

Soyuz Rocket Awaiting Launch at Baikonur Cosmodrome

NANO TECH
New milestone in the search for water on distant planets

Clear skies on exo-Neptune

Distant planet's atmosphere shows evidence of water vapor

Chandra Finds Planet That Makes Star Act Deceptively Old

NANO TECH
Raytheon reports USAF contract for 3D radar

Metal Made Like Plastic May Have Big Impact

Ecuador opens tender to acquire radars

Space debris expert warns of increasing CubeSat collision risk




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.