![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Singapore (SPX) Oct 10, 2017
Researchers from the National University of Singapore (NUS) have established new findings on the properties of two-dimensional molybdenum disulfide (MoS2), a widely studied semiconductor of the future. In two separate studies led by Professor Andrew Wee and Assistant Professor Andrivo Rusydi from the Department of Physics at the NUS Faculty of Science, the researchers uncovered the role of oxygen in MoS2, and a novel technique to create multiple tunable, inverted optical band gaps in the material. These novel insights deepen the understanding of the intrinsic properties of MoS2 which could potentially transform its applications in the semiconductor industry. MoS2 is a semiconductor-like material that exhibits desirable electronic and optical properties for the development and enhancement of transistors, photodetectors and solar cells. Prof Wee explained, "MoS2 holds great industrial importance. With an atomically thin two-dimensional structure and the presence of a 1.8eV energy band gap, MoS2 is a semiconductor that can offer broader applications than graphene which lacks a band gap."
Presence of oxygen alters the electronic and optical properties of MoS2 The team observed that MoS2 displayed a higher dielectric function when exposed to oxygen. This new knowledge shed light on how adsorption and desorption of oxygen by MoS2 can be employed to modify its electronic and optical properties to suit different applications. The study also highlights the need for adequate consideration of extrinsic factors that may affect the properties of the material in future research. The first author of this paper is Dr Pranjal Kumar Gogoi from the Department of Physics at NUS Faculty of Science.
MoS2 can possess two tunable optical band gaps The research team also identified that the tunable optical band gaps are induced by strong-charge lattice coupling as a result of the electron doping. The first author of this second paper is Dr Xinmao Yin from the Department of Physics at NUS Faculty of Science. The research findings from the two studies lend insights to other materials that possess similar structure with MoS2. "MoS2 falls under a group of material known as the two-dimensional transitional metal dihalcogenides (2D-TMDs) which are of great research interest because of their potential industrial applications. The new knowledge from our studies will assist us in unlocking the possibilities of 2D-TMD-based applications such as the fabrication of 2D-TMD-based field effect transistors," said Asst Prof Rusydi. Leveraging the findings of these studies, the researchers will apply similar studies to other 2D-TMDs and to explore different possibilities of generating new, valuable properties in 2D-TMDs that do not exist in nature. The studies were published in the scientific journals Physical Review Letters and Nature Communications.
![]() New York, NY (SPX) Oct 09, 2017 Columbia Engineering researchers, led by Harish Krishnaswamy, associate professor of electrical engineering, in collaboration with Professor Andrea Alu's group from UT-Austin, continue to break new ground in developing magnet-free non-reciprocal components in modern semiconductor processes. At the IEEE International Solid-State Circuits Conference in February, Krishnaswamy's group unveiled a new ... read more Related Links National University of Singapore Computer Chip Architecture, Technology and Manufacture Nano Technology News From SpaceMart.com
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |