Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
NIST measures laser power with portable scale
by Staff Writers
Washington DC (SPX) Oct 28, 2013


This is still from an animation of the new laser power measurement technique. Credit: Gary Kuebler and Ian Parker.

Researchers at the National Institute of Standards and Technology (NIST) have demonstrated a novel method for measuring laser power by reflecting the light off a mirrored scale, which behaves as a force detector.

Although it may sound odd, the technique is promising as a simpler, faster, less costly and more portable alternative to conventional methods of calibrating high-power lasers used in manufacturing, the military and research.

Optical power has traditionally been measured by comparing it to electrical units. Researchers aim a laser at a coated detector, measure the detector's temperature change, and then determine the electrical power needed to generate an equivalent amount of heat.

This method is extremely accurate but difficult with high-power lasers, because it requires slow heating and cooling of massive absorbers. Most absorbers cannot withstand the destructive powers of lasers used for cutting and melting.

Laser power also can be measured by comparison to a reference mass, which is what scales measure, or an equivalent force. This idea is almost as old as the laser but only recently became practical. Large lasers like industrial cutting tools, with output power of 4 to 6 kilowatts, and military lasers with output power of 10 to 100 kilowatts are becoming more common, and they exert enough force to be measured relatively easily.

Researchers also now have access to precision scales that can be fitted with mirrors and have the capability to operate either vertically or horizontally. The only limiting dimension is that the mirror needs to be large enough to reflect the laser beam.

NIST's measurement technique, described in a new paper,* measures a laser's force, or the push exerted on a mirror by the streaming photons (light particles). The result, measured in either milligrams (mass) or microNewtons (force), is used to calculate optical power. The scale is first positioned horizontally to be calibrated with a mass placed on top.

This "self-calibration" feature means the instrument, if used in the field, would not need to be transported to NIST or somewhere else for periodic evaluations. When used to measure a laser's force, the scale is positioned vertically to be compatible (and safe) with large lasers that typically are mounted horizontally.

Perhaps most intriguingly, light power output can be measured while the laser is being used, thus not wasting any light. The beam is simply reflected off the mirror and directed to a target.

The new measurement method not only simplifies laser power measurements but also advances fundamental measurement science. Now, NIST will be able to compare an optical watt (the basic electrical unit) to a kilogram, the fundamental unit of mass, perhaps leading to improved accuracy in laser power measurements and potentially enabling faster mass calibrations at the microgram level on the factory floor.

NIST researchers have developed and tested a prototype setup with infrared lasers and a commercial scale. The tabletop scale weighs less than 25 pounds. NIST researchers expect the setup would ultimately be about one-fifth the cost of the traditional approach and produce results in about one-tenth the time (less than 2 seconds). The methods are projected to have comparable accuracy of plus or minus 1 percent.

A co-author of the new paper works for Scientech (Boulder, Colo.), which invented the scale used in the experiment. *P.A. Williams, J.A. Hadler, R. Lee, F. Maring and J.H. Lehman. Use of radiation pressure for measurement of high-power laser emission. Optics Letters. Oct. 15.

.


Related Links
National Institute of Standards and Technology (NIST)
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
NASA Laser Communication System Sets Record with Data Transmissions to and from Moon
Greenbelt MD (SPX) Oct 24, 2013
NASA's Lunar Laser Communication Demonstration (LLCD) has made history using a pulsed laser beam to transmit data over the 239,000 miles between the moon and Earth at a record-breaking download rate of 622 megabits per second (Mbps). LLCD is NASA's first system for two-way communication using a laser instead of radio waves. It also has demonstrated an error-free data upload rate of 20 Mbps ... read more


TECH SPACE
Crowdfunded Lunar Spacecraft Reaches Funding Milestone

LADEE Continues To Settle Into Operational Lunar Orbit

NASA's moon landing remembered as a promise of a 'future which never happened'

Russia could build manned lunar base

TECH SPACE
NASA to probe why Mars lost its atmosphere

Mars Crater May Actually Be Ancient Supervolcano

Scientists discover how the atmosphere of Mars turned to stone

Mars Rover Opportunity Heads Uphill

TECH SPACE
Incoming ISS Commander to Treat Crew to Sushi

NASA Partner SpaceX Completes Review of 2014 Commercial Crew Abort Test

Enough lying about

US firm offers 30 kilometer-high balloon ride

TECH SPACE
China launches experimental satellite Shijian-16

China Moon Rover A New Opportunity To Explore Our Nearest Neighbor

Is China Challenging Space Security

NASA's China policy faces mounting pressure

TECH SPACE
European cargo freighter to undock from ISS

Cygnus cargo craft leaves international space station

Cygnus cargo craft readies to leave space station

Aerojet Rocketdyne Thrusters Help Cygnus Spacecraft Berth at the International Space Station

TECH SPACE
ILS Proton Launches Sirius FM-6 Satellite

Boeing Finalizes Agreement for Kennedy Space Center Facility

Russia Plans to Spend $22M on Soyuz-2 Launch Pad

Ariane 5 arrives at the Spaceport's Final Assembly Building for payload installation

TECH SPACE
Carbon Worlds May be Waterless

Planets rich in carbon could be poor in water, reducing life chances

New planet found around distant star could be record-breaker

Count of discovered exoplanets passes the 1,000 mark

TECH SPACE
Zoomable Holograms Pave the Way for Versatile, Portable Projectors

Copper Shock: An Atomic-scale Stress Test

Study Finds Natural Compound Can Be Used for 3-D Printing of Medical Implants

NIST measures laser power with portable scale




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement