|
. | . |
|
by Staff Writers Washington DC (SPX) Mar 04, 2011
Before you can build that improved turbojet engine, before you can create that longer-lasting battery, you have to ensure all the newfangled materials in it will behave the way you want-even under conditions as harsh as the upper atmosphere at supersonic speed, or the churning chemistry of an ion cell. Now computer scientists at the National Institute of Standards and Technology (NIST) have improved software* that can take much of the guesswork out of tough materials problems like these. The software package, OOF (Object-Oriented Finite element analysis) is a specialized tool to help materials designers understand how stress and other factors act on a material with a complex internal structure, as is the case with many alloys and ceramics. As its starting point, OOF uses micrographs-images of a material taken by a microscope. At the simplest level, OOF is designed to answer questions like, "I know what this material looks like and what it's made of, but I wonder what would happen if I pull on it in different ways?" or "I have a picture of this stuff and I know that different parts expand more than others as temperature increases-I wonder where the stresses are greatest?" OOF has been available in previous versions since 1998, but the new version (2.1) that the NIST team released on Feb. 16, 2011, adds a number of improvements. According to team member Stephen Langer, version 2.1 is the first dramatic extension of the original capabilities of the software. "Version 2.1 greatly improves OOF's ability to envision 'non-linear' behavior, such as large-scale deformation, which plays a significant role in many types of stress response," says Langer. "It also allows users to analyze a material's performance over time, not just under static conditions as was the case previously." Jet turbine blades, for example, can spin more efficiently with a layer of ceramic material sprayed onto their surfaces, but the ceramic layers are brittle. Knowing how these ceramic layers will respond as the metal blades heat up and expand over time is one of the many problems OOF 2.1 is designed to help solve. "We've also included templates programmers can use to plug in their own details and formulas describing a particular substance," Langer says. "We're trying to make it easy for users to test anything-we're not concentrating on any particular type of material." Later this year, the team expects to enable users to analyze three-dimensional micrographs of a material, rather than the 2-D "slices" that can be analyzed at this point. OOF is available for free download. The package runs on Unix like systems, including Linux, OS X and Linux-like environments within Windows.
Related Links National Institute of Standards and Technology (NIST) Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement |