. | . |
NASA's small spacecraft produces first 883-gigahertz global ice-cloud map by Lori Keesey for GSFC News Greenbelt MD (SPX) Jan 31, 2018
A bread loaf-sized satellite has produced the world's first map of the global distribution of atmospheric ice in the 883-Gigahertz band, an important frequency in the submillimeter wavelength for studying cloud ice and its effect on Earth's climate. IceCube - the diminutive spacecraft that deployed from the International Space Station in May 2017- has demonstrated-in-space a commercial 883-Gigahertz radiometer developed by Virginia Diodes Inc., or VDI, of Charlottesville, Virginia, under a NASA Small Business Innovative Research contract. It is capable of measuring critical atmospheric cloud ice properties at altitudes between 3-9 miles (5 Km-15 Km). NASA scientists pioneered the use of submillimeter wavelength bands, which fall between the microwave and infrared on the electromagnetic spectrum, to sense ice clouds. However, until IceCube, these instruments had flown only aboard high-altitude research aircraft. This meant scientists could gather data only in areas over which the aircraft flew. "With IceCube, scientists now have a working submillimeter radiometer system in space at a commercial price," said Dong Wu, a scientist and IceCube principal investigator at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "More importantly, it provides a global view on Earth's cloud-ice distribution." Sensing atmospheric cloud ice requires scientists deploy instruments tuned to a broad range of frequency bands. However, it's particularly important to fly submillimeter sensors. This wavelength fills a significant data gap in the middle and upper troposphere where ice clouds are often too opaque for infrared and visible sensors to penetrate. It also reveals data about the tiniest ice particles that can't be detected clearly in other microwave bands.
The Technical Challenge Ultimately, the agency wants to infuse this type of receiver into an ice-cloud imaging radiometer for NASA's proposed Aerosol-Cloud-Ecosystems, or ACE, mission. Recommended by the National Research Council, ACE would assess on a daily basis the global distribution of ice clouds, which affect the Earth's emission of infrared energy into space and its reflection and absorption of the Sun's energy over broad areas. Before IceCube, this value was highly uncertain. "It speaks volumes that our scientists are doing science with a mission that primarily was supposed to demonstrate technology," said Jared Lucey, one of IceCube's instrument engineers. He was one of only a handful of scientists and engineers at Goddard and NASA's Wallops Flight Facility in Virginia who developed IceCube in just two years. "We met our mission goals and now everything else is bonus," he said.
Multiple Lessons Learned "It wasn't an easy task," said Negar Ehsan, IceCube's instrument system lead. "It was a low-budget project" that required the team to develop both an engineering test unit and a flight model in a relatively short period of time. In spite of the challenges, the team delivered the VDI-provided instrument on time and budget. "We demonstrated for the first time 883-Gigahertz observations in space and proved that the VDI-provided system works appropriately," she said.
"It was rewarding." "IceCube isn't perfect," Wu conceded, referring to noise or slight errors in the radiometer's data. "However, we can make a scientifically useful measurement. We came away with a lot of lessons learned from this CubeSat project, and next time engineers can build it much more quickly." "This is a different mission model for NASA," Wu continued. "Our principal goal was to show this small mission could be done. The question was, could we can get useful science and advance space technology with a low-cost CubeSat developed under an effective government-commercial partnership. I believe the answer is yes." Small satellites, including CubeSats, are playing an increasingly larger role in exploration, technology demonstration, scientific research and educational investigations at NASA, including: planetary space exploration; Earth observations; fundamental Earth and space science; and developing precursor science instruments like cutting-edge laser communications, satellite-to-satellite communications and autonomous movement capabilities. NASA ESTO supports InVEST missions like IceCube and technologies at NASA centers, industry and academia to develop, refine and demonstrate new methods for observing Earth from space, from information systems to new components and instruments.
For more Goddard technology news visit here
NASA's GOLD powers on for the first time Greenbelt MD (SPX) Jan 30, 2018 NASA's Global-scale Observations of the Limb and Disk, or GOLD, mission powered on the GOLD instrument for the first time after launch on Jan. 28, 7:23 p.m. EST. The systems engineers successfully established communication with the GOLD instrument and its detector doors opened when commanded. After their tests, the engineers powered off the instrument the same day, at 7:40 p.m. EST. The instrument will remain powered off until its host satellite, SES-14, reaches geostationary orbit and GOLD operat ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |