![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Pasadena CA (JPL) Oct 02, 2019
Last night, NASA's Juno mission to Jupiter successfully executed a 10.5-hour propulsive maneuver - extraordinarily long by mission standards. The goal of the burn, as it's known, will keep the solar-powered spacecraft out of what would have been a mission-ending shadow cast by Jupiter on the spacecraft during its next close flyby of the planet on Nov. 3, 2019. Juno began the maneuver yesterday, on Sept. 30, at 7:46 p.m. EDT (4:46 p.m. PDT) and completed it early on Oct. 1. Using the spacecraft's reaction-control thrusters, the propulsive maneuver lasted five times longer than any previous use of that system. It changed Juno's orbital velocity by 126 mph (203 kph) and consumed about 160 pounds (73 kilograms) of fuel. Without this maneuver, Juno would have spent 12 hours in transit across Jupiter's shadow - more than enough time to drain the spacecraft's batteries. Without power, and with spacecraft temperatures plummeting, Juno would likely succumb to the cold and be unable to awaken upon exit. "With the success of this burn, we are on track to jump the shadow on Nov. 3," said Scott Bolton, Juno principal investigator at the Southwest Research Institute in San Antonio. "Jumping over the shadow was an amazingly creative solution to what seemed like a fatal geometry. Eclipses are generally not friends of solar-powered spacecraft. Now instead of worrying about freezing to death, I am looking forward to the next science discovery that Jupiter has in store for Juno." Juno has been navigating in deep space since 2011. It entered an initial 53-day orbit around Jupiter on July 4, 2016. Originally, the mission planned to reduce the size of its orbit a few months later to decrease the period between science flybys of the gas giant to every 14 days. But the project team recommended to NASA to forgo the main engine burn due to concerns about the spacecraft's fuel delivery system. Juno's 53-day orbit provides all the science as originally planned; it just takes longer to do so. The spacecraft's longer life at Jupiter is what led to the need to avoid the gas giant's shadow. "Pre-launch mission planning did not anticipate a lengthy eclipse that would plunge our solar-powered spacecraft into darkness," said Ed Hirst, Juno project manager at NASA's Jet Propulsion Laboratory in Pasadena, California. "That we could plan and execute the necessary maneuver while operating in Jupiter's orbit is a testament to the ingenuity and skill of our team, along with the extraordinary capability and versatility of our spacecraft."
![]() ![]() Huge Volcano on Jupiter's Moon Io Erupts on Regular Schedule Tucson AZ (SPX) Sep 18, 2019 Volcanic eruptions are difficult to predict, but observations have shown the largest and most powerful volcano on Io, a large moon of Jupiter, has been erupting on a relatively regular schedule. The volcano Loki is expected to erupt in mid-September 2019, according to a poster by Planetary Science Institute Senior Scientist Julie Rathbun presented this week. "Loki is the largest and most powerful volcano on Io, so bright in the infrared that we can detect it using telescopes on the Earth," R ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |