![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Greenbelt MD (SPX) May 03, 2017
In May, a team of Goddard scientists will begin measuring greenhouse gases over the Mid-Atlantic region - an area chosen in part because it encompasses a range of vegetation, climate, and soil types that would influence the exchange of carbon dioxide and methane between the Earth and the atmosphere. The airborne campaign, called the Carbon Airborne Flux Experiment, or CARAFE, could help scientists better understand the exchange process, also known as flux, and improve computer models that predict Earth's carbon sinks, natural or artificial areas that absorb carbon dioxide or methane. Scientists know how much carbon dioxide is produced annually through the burning of fossil fuels. They also know that about 44 percent of these emissions stay in the atmosphere and that the oceans and land sinks take up the rest. What they don't know as well is what biological mechanisms currently control the uptake and storage in grasses, crops, and trees. They also don't know whether these sinks will continue, considering ever-increasing emissions and changing climate. Currently, most flux data are gathered at towers or inferred from atmospheric carbon measurements, including those from satellites. Unfortunately, towers typically measure only the conditions occurring within their general vicinities. CARAFE will help rectify that. The team will use CARAFE data to determine how well computer models represent regional flux variations and compare actual surface flux rates against those inferred from satellite data - both of which will help improve existing atmospheric and ecosystem computer modeling. These analyses can help improve representations of the land surface in both weather and climate models. "Hopefully we will be able to demonstrate the value of these measurements," said CARAFE Principal Investigator Randy Kawa, an expert in carbon modeling. "We want to build a confident and consistent picture of both carbon-dioxide and methane fluxes and their dependence on underlying biological, geological, weather, and chemical processes. This will allow decision makers to make better informed decisions about greenhouse gas policy and impacts."
Month-Long Campaign While flying "low and slow," the campaign's modified, commercial-off-the-shelf methane/carbon-dioxide analyzers, wind sensors, camera, and GPS will gather 10 carefully synchronized measurements per second. Specifically, the instruments will measure both greenhouse gas levels along tree lines and vertical wind speeds, which when combined reveal how fast these gases transfer to or from the atmosphere. "If the GPS data is off by even a half second, the flux measurements are off," said CARAFE Co-Principal Investigator Paul Newman, adding that the team used Goddard Internal Research and Development program funding to modify the instruments and develop the data system. "What we're trying to determine is how fast are trees taking up carbon dioxide," he said. "This rate differs for different trees, shrubs, grasses, and other conditions. All have different uptake levels. It changes if the vegetation doesn't have enough water, for example, or if it is healthy. We must represent that in or models. We have to understand the rates."
![]() Missoula MT (SPX) Apr 27, 2017 New research by the University of Montana and its partner institutions gives insight into how forests globally will respond to long-term climate change. Cory Cleveland, a UM professor of terrestrial ecosystem ecology, said that previous research in the wet tropics - where much of global forest productivity occurs - indicates that the increased rainfall that may occur with climate change wo ... read more Related Links Goddard Space Flight Center Earth Observation News - Suppiliers, Technology and Application
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |