. | . |
NASA rockets study why tech goes haywire near poles by Miles Hatfield for GSFC News Greenbelt MD (SPX) Nov 25, 2019
Each second, 1.5 million tons of solar material shoot off of the Sun and out into space, traveling at hundreds of miles per second. Known as the solar wind, this incessant stream of plasma, or electrified gas, has pelted Earth for more than 4 billion years. Thanks to our planet's magnetic field, it's mostly deflected away. But head far enough north, and you'll find the exception. "Most of Earth is shielded from the solar wind," said Mark Conde, space physicist as the University of Alaska, Fairbanks. "But right near the poles, in the midday sector, our magnetic field becomes a funnel where the solar wind can get all the way down to the atmosphere." These funnels, known as the polar cusps, can cause some trouble. The influx of solar wind disturbs the atmosphere, disrupting satellites and radio and GPS signals. Beginning Nov. 25, 2019, three new NASA-supported missions will launch into the northern polar cusp, aiming to improve the technology affected by it.
Shaky Satellites Two of the three upcoming missions will study the same anomaly: a patch of atmosphere inside the cusp notably denser than its surroundings. It was discovered in 2004, when scientists noticed that part of the atmosphere inside the cusp was about 1.5 times heavier than expected. "A little extra mass 200 miles up might seem like no big deal," said Conde, the principal investigator for the Cusp Region Experiment-2, or CREX-2, mission. "But the pressure change associated with this increased mass density, if it occurred at ground level, would cause a continuous hurricane stronger than anything seen in meteorological records." This additional mass creates problems for spacecraft flying through it, like the many satellites that follow a polar orbit. Passing through the dense patch can shake up their trajectories, making close encounters with other spacecraft or orbital debris riskier than they would otherwise be. "A small change of a few hundred meters can make the difference between having to do an evasive maneuver, or not," Conde said. Both CREX-2 and Cusp Heating Investigation, or CHI mission, led by Miguel Larsen of Clemson University in South Carolina, will study this heavy patch of atmosphere to better predict its effects on satellites passing through. "Each mission has its own strengths, but ideally, they'll be launched together," Larsen said.
Corrupted Communication "Turbulence is one of the really hard remaining questions in classical physics," said Joran Moen, space physicist at the University of Oslo. "We don't really know what it is because we have no direct measurements yet." Moen, who is leading the Investigation of Cusp Irregularities-5 or ICI-5 mission, likens turbulence to the swirling eddies that form when rivers rush around rocks. When the atmosphere grows turbulent, GPS and communication signals passing through it can become garbled, sending unreliable signals to the planes and ships that depend on them. Moen hopes to make the first measurements to distinguish true turbulence from electric waves that can also disrupt communication signals. Though both processes have similar effects on GPS, figuring out which phenomenon drives these disturbances is critical to predicting them. "The motivation is to increase the integrity of the GPS signals," Moen said. "But we need to know the driver to forecast when and where these disturbances will occur."
Waiting on Weather "Turbulence occurs in many places, but it's better to go to this laboratory that is not contaminated by other processes," Moen said. "The 'cusp laboratory' - that's Svalbard." Ideally, the CHI rocket would launch from Svalbard at nearly the same time that CREX-2 launches from Andenes, Norway. The ICI-5 rocket, on a second launcher in Svalbard, would fly soon after. But the timing can be tricky: Andenes is 650 miles south of Svalbard, and can experience different weather. "It's not a requirement, but launching together would certainly multiply the scientific returns of the missions," Conde said. Keeping a constant eye on the weather, waiting for the right moment to launch, is a key part of launching rockets - even part of the draw. "It really is an all-consuming thing," Conde said. "All you do when you're out there is watch conditions and talk about the rocket and decide what you would do."
New procedure for obtaining a cheap ultra-hard material that is resistant to radioactivity Seville, Spain (SPX) Oct 28, 2019 University of Seville researchers, led by the professor Francisco Luis Cumbrera, together with colleagues from the University of Zaragoza and CSIC, have found a procedure for producing the phase B6C of boron carbide. This phase had been described from a theoretical point of view, but obtaining it and describing its character were a task that remained unfulfilled. This scientific-technological advance will make it possible to provide a cheap, ultra-resistant material for the design of planes, cars ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |