. | . |
NASA Poised to Topple a Planet-Finding Barrier by Lori Keesey for GSFC News Greenbelt MD (SPX) Jan 29, 2018
NASA optics experts are well on the way to toppling a barrier that has thwarted scientists from achieving a long-held ambition: building an ultra-stable telescope that locates and images dozens of Earth-like planets beyond the solar system and then scrutinizes their atmospheres for signs of life. Babak Saif and Lee Feinberg at NASA's Goddard Space Flight Center in Greenbelt, Maryland, have shown for the first time that they can dynamically detect subatomic- or picometer-sized distortions - changes that are far smaller than an atom - across a five-foot segmented telescope mirror and its support structure. Collaborating with Perry Greenfield at the Space Telescope Science Institute in Baltimore, the team now plans to use a next-generation tool and thermal test chamber to further refine their measurements. The measurement feat is good news to scientists studying future missions for finding and characterizing extrasolar Earth-like planets that potentially could support life. To find life, these observatories would have to gather and focus enough light to distinguish the planet's light from that of its much brighter parent star and then be able to dissect that light to discern different atmospheric chemical signatures, such as oxygen and methane. This would require a super-stable observatory whose optical components move or distort no more than 12 picometers, a measurement that is about one-tenth the size of a hydrogen atom. To date, NASA has not built an observatory with such demanding stability requirements.
How Displacements Occur Scientists say that even nearly imperceptible, atomic-sized movements would affect a future observatory's ability to gather and focus enough light to image and analyze the planet's light. Consequently, mission planners must design telescopes to picometer accuracies and then test it at the same level across the entire structure, not just between the telescope's reflective mirrors. Movement occurring at any particular position might not accurately reflect what's actually happening in other locations. "These future missions will require an incredibly stable observatory," said Azita Valinia, deputy Astrophysics Projects Division program manager. "This is one of the highest technology tall poles that future observatories of this caliber must overcome. The team's success has shown that we are steadily whittling away at that particular obstacle."
The Initial Test Like all interferometers, the instrument splits light and then recombines it to measure tiny changes, including motion. The HSI can quickly measure dynamic changes across the mirror and other structural components, giving scientists insights into what is happening all across the telescope, not just in one particular spot. Even though the HSI was designed to measure nanometer or molecule-sized distortions - which was the design standard for Webb - the team wanted to see it could use the same instrument, coupled with specially developed algorithms, to detect even smaller changes over the surface of a spare five-foot Webb mirror segment and its support hardware. The test proved it could, measuring dynamic movement as small as 25 picometers - about twice the desired target, Saif said.
Next Steps Saif and Feinberg plan to place test items inside the chamber to see if they can achieve the 12-picometer target accuracy. "I think we've made a lot of progress. We're getting there," Saif said. For more Goddard technology news, go here
Tucson AZ (SPX) Jan 24, 2018 wo exoplanets in the TRAPPIST-1 system have been identified as most likely to be habitable, a paper by PSI Senior Scientist Amy Barr says. The TRAPPIST-1 system has been of great interest to observers and planetary scientists because it seems to contain seven planets that are all roughly Earth-sized, Barr and co-authors Vera Dobos and Laszlo L. Kiss said in "Interior Structures and Tidal H ... read more Related Links Technology at NASA Lands Beyond Beyond - extra solar planets - news and science Life Beyond Earth
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |