Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
NASA's Galaxy Evolution Explorer Helps Confirm Nature of Dark Energy
by Staff Writers
Pasadena CA (JPL) May 23, 2011


This diagram illustrates two ways to measure how fast the universe is expanding. In the past, distant supernovae, or exploded stars, have been used as "standard candles" to measure distances in the universe, and to determine that its expansion is actually speeding up. The supernovae glow with the same intrinsic brightness, so by measuring how bright they appear on the sky, astronomers can tell how far away they are. This is similar to a standard candle appearing fainter at greater distances (left-hand illustration).

In a new survey from NASA's Galaxy Evolution Explorer and the Anglo-Australian Telescope atop Siding Spring Mountain in Australia, the distances to galaxies were measured using a "standard ruler" (right-hand illustration). This method is based on the preference for pairs of galaxies to be separated by a distance of 490 million light-years today. The separation appears to get smaller as the galaxies move farther away, just like a ruler of fixed length (right-hand illustration). Image credit: NASA/JPL-Caltech.

A five-year survey of 200,000 galaxies, stretching back seven billion years in cosmic time, has led to one of the best independent confirmations that dark energy is driving our universe apart at accelerating speeds. The survey used data from NASA's space-based Galaxy Evolution Explorer and the Anglo-Australian Telescope on Siding Spring Mountain in Australia.

The findings offer new support for the favored theory of how dark energy works - as a constant force, uniformly affecting the universe and propelling its runaway expansion. They contradict an alternate theory, where gravity, not dark energy, is the force pushing space apart. According to this alternate theory, with which the new survey results are not consistent, Albert Einstein's concept of gravity is wrong, and gravity becomes repulsive instead of attractive when acting at great distances.

"The action of dark energy is as if you threw a ball up in the air, and it kept speeding upward into the sky faster and faster," said Chris Blake of the Swinburne University of Technology in Melbourne, Australia. Blake is lead author of two papers describing the results that appeared in recent issues of the Monthly Notices of the Royal Astronomical Society.

"The results tell us that dark energy is a cosmological constant, as Einstein proposed. If gravity were the culprit, then we wouldn't be seeing these constant effects of dark energy throughout time."

Dark energy is thought to dominate our universe, making up about 74 percent of it. Dark matter, a slightly less mysterious substance, accounts for 22 percent. So-called normal matter, anything with atoms, or the stuff that makes up living creatures, planets and stars, is only approximately four percent of the cosmos.

The idea of dark energy was proposed during the previous decade, based on studies of distant exploding stars called supernovae. Supernovae emit constant, measurable light, making them so-called "standard candles," which allows calculation of their distance from Earth. Observations revealed dark energy was flinging the objects out at accelerating speeds.

Dark energy is in a tug-of-war contest with gravity. In the early universe, gravity took the lead, dominating dark energy. At about 8 billion years after the Big Bang, as space expanded and matter became diluted, gravitational attractions weakened and dark energy gained the upper hand.

Billions of years from now, dark energy will be even more dominant. Astronomers predict our universe will be a cosmic wasteland, with galaxies spread apart so far that any intelligent beings living inside them wouldn't be able to see other galaxies.

The new survey provides two separate methods for independently checking the supernovae results. This is the first time astronomers performed these checks across the whole cosmic timespan dominated by dark energy.

The team began by assembling the largest three-dimensional map of galaxies in the distant universe, spotted by the Galaxy Evolution Explorer. The ultraviolet-sensing telescope has scanned about three-quarters of the sky, observing hundreds of millions of galaxies.

"The Galaxy Evolution Explorer helped identify bright, young galaxies, which are ideal for this type of study," said Christopher Martin, principal investigator for the mission at the California Institute of Technology in Pasadena. "It provided the scaffolding for this enormous 3-D map."

The astronomers acquired detailed information about the light for each galaxy using the Anglo-Australian Telescope and studied the pattern of distance between them. Sound waves from the very early universe left imprints in the patterns of galaxies, causing pairs of galaxies to be separated by approximately 500 million light-years.

This "standard ruler" was used to determine the distance from the galaxy pairs to Earth - the closer a galaxy pair is to us, the farther apart the galaxies will appear from each other on the sky.

As with the supernovae studies, this distance data were combined with information about the speeds at which the pairs are moving away from us, revealing, yet again, the fabric of space is stretching apart faster and faster.

The team also used the galaxy map to study how clusters of galaxies grow over time like cities, eventually containing many thousands of galaxies. The clusters attract new galaxies through gravity, but dark energy tugs the clusters apart. It slows down the process, allowing scientists to measure dark energy's repulsive force.

"Observations by astronomers over the last 15 years have produced one of the most startling discoveries in physical science; the expansion of the universe, triggered by the Big Bang, is speeding up," said Jon Morse, astrophysics division director at NASA Headquarters in Washington.

"Using entirely independent methods, data from the Galaxy Evolution Explorer have helped increase our confidence in the existence of dark energy."

.


Related Links
GALEX at NASA
GALEX at Caltech
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Searching for dark matter and antimatter
Bonn, Germany (SPX) Apr 27, 2011
The Alpha Magnetic Spectrometer (AMS) will be located outside the International Space Station (ISS) and will use its various detectors to seek cosmic radiation in space. On 29 April 2011, at 21:47 CET (19:47 UTC), the AMS will be launched on board the space shuttle Endeavour from Cape Canaveral (Florida), en route to the ISS. The project, supported by the German Aerospace Center, will invo ... read more


STELLAR CHEMISTRY
A Wrinkly Old Reveal Clues To Its Past

MoonBots Challenges Teams to Conduct Lunar Missions with LEGO Robots

Earth's Nearest Neighbor Within Reach

Space Adventures proposes modified Soyuz TMA for Lunar tourists

STELLAR CHEMISTRY
Endeavour Crater Just Three Miles Away For Opportunity Mars Rover

Mars Rover Driving Leaves Distinctive Tracks

Opportunity Cracks The 18-Mile Mark

Mars Science Laboratory Aeroshell Delivered To Launch Site

STELLAR CHEMISTRY
Which technologies get better faster

AIA Says US Human Spaceflight At Critical Juncture

NASA Denies Entry To Chinese Journalists For Shuttle Launch

NASA Announces Its First Payloads for Commercial Suborbital Spacecraft

STELLAR CHEMISTRY
Top Chinese scientists honored with naming of minor planets

China sees smooth preparation for launch of unmanned module

China to attempt first space rendezvous

Countdown begins for Chineses space station program

STELLAR CHEMISTRY
Pope makes first ever video call to astronauts in space

STS-134 Arrives, Crew Begins Work at Station

APL-Built Plasma Detector Launches on Space Shuttle Endeavour

"Canary" is Bound for ISS

STELLAR CHEMISTRY
Russia sends two Soyuz carrier rockets to French Guiana

ILS Proton Successfully Launches Telstar 14R And Estrela do Sul 2 for Telesat

Satellites for Asia and India are orbited on Arianespace's third Ariane 5 mission of 2011

Taiwan, Singapore launch satellite

STELLAR CHEMISTRY
Bennett team discovers new class of extrasolar planets

Climate scientists reveal new candidate for first habitable exoplanet

Free-Floating Planets May be More Common Than Stars

New SETI survey focuses on Kepler's top Earth-like planets

STELLAR CHEMISTRY
Japanese protest revised school radiation limit

GMV provides the flight dynamics system for the O3b constellation

Malaysians protest Australian rare earths plant

Google stops digitizing old newspapers




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement