Subscribe free to our newsletters via your
. 24/7 Space News .




SHAKE AND BLOW
NASA Flies Dragon Eye Unmanned Aircraft Into Volcanic Plume
by Staff Writers
Greenbelt MD (SPX) Apr 10, 2013


The study launched 10 flights between March 11-14, 2013, into the volcanic plume and along the rim of the Turrialba summit crater approx. 10,500 feet above sea level. Image credit: NASA/ Matthew Fladeland. For a larger version of this image please go here.

NASA Earth science researchers last month traveled to Turrialba Volcano, near San Jose, Costa Rica, to fly a Dragon Eye unmanned aerial vehicle (UAV) -- a small electric aircraft equipped with cameras and sensors -- into the volcano's sulfur dioxide plume and over its summit crater, to study Turrialba's chemical environment. The project is designed to improve the remote-sensing capability of satellites and computer models of volcanic activity.

The study, called "In Situ Validation and Calibration of Remotely Sensed Volcanic Emission Data and Models," launched 10 flights between March 11-14, 2013, into the volcanic plume and along the rim of the Turrialba summit crater approximately 10,500 feet above sea level (ASL).

The launch site was located at 8,900 feet ASL, and flights ranged up to 12,500 feet ASL, more than 2,000 feet above the Turrialba summit. Project objectives included improving satellite data research products, such as maps of concentration and distribution of volcanic gases, and transport-pathway models of volcanic plumes.

During the research flights, the team coordinated its data gathering with the Advanced Spaceborne Thermal Emission and Reflection (ASTER) instrument on NASA's Terra spacecraft, allowing scientists to compare sulfur dioxide concentration measurements from the satellite with measurements taken from within the plume.

Scientists believe computer models derived from this study will contribute to safeguarding the National and International Airspace System, improve global climate predictions, and mitigate environmental hazards (e.g., sulfur dioxide volcanic smog or "vog") for people who live around volcanoes.

A key factor of such models is the intensity and character of the volcanic activity located near the eruption vent. For instance, knowing the height of ash and gas concentrations, and temperatures over the vent during an eruption are important initial factors for any model that predicts the direction of the volcanic plume.

"It is very difficult to gather data from within volcanic eruption columns and plumes because updraft wind speeds are very high and high ash concentrations can quickly destroy aircraft engines," said David Pieri, the project's principal investigator and a research scientist at NASA's Jet Propulsion Laboratory (JPL), Pasadena, Calif.

"Such flight environments can be very dangerous to manned aircraft. Volcanic eruption plumes may stretch for miles from a summit vent, and detached ash clouds can drift hundreds to thousands of miles from an eruption site.

To penetrate such dangerous airspace, UAVs, especially those with electric engines that ingest little contaminated air, are an emerging and effective way to gather crucial data about ash and gas concentrations and their lateral and vertical distribution.

To accomplish project objectives, research scientists at NASA's Ames Research Center, Moffett Field, Calif., used three Aerovironment RQ-14 Dragon Eye UAVs which were acquired from the United States Marine Corps (USMC) via the General Services Administration's San Francisco office. These small electric unmanned aircraft weigh 5.9 pounds, have a 3.75-foot wingspan and twin electric engines, and can carry a one-pound instrument payload for up to an hour within a volcanic plume.

"This project is great example of how unmanned aircraft can be used for beneficial civilian purposes - in this case for better understanding Earth system processes and the impact of volcanism on our atmosphere," said Matthew Fladeland, airborne science manager at Ames. "By taking these retired military tools, we can very efficiently and effectively collect measurements that improve NASA satellite data and aviation safety."

Ames team members integrated payload instruments onto the UAV, which included the standard USMC visible and infrared video cameras, sulfur dioxide and particle sensors, and automatic atmospheric sampling bottles keyed to measure sulfur dioxide concentration. Researchers also operated the UAV, directing it into a volcanic plume to characterize its chemical and physical environment.

This capability was especially important during simultaneous flights by NASA's Terra spacecraft with the ASTER imaging radiometer. Next year, as part of this project, Ames also will operate the larger SIERRA unmanned aircraft (about 400 pounds takeoff weight, 100-pound payload), which will carry a more sophisticated mass spectrometer to measure additional gases in the Turrialba volcano plume.

The volcanos of Costa Rica provide superb natural laboratories to test and develop these volcanological UAV systems. For instance, the Turrialba plume has relatively minimal updraft and wind shear.

The continuously erupting plume consists primarily of carbon dioxide, water vapor, sulfur dioxide, some hydrogen sulfide and other minor gases, such as helium, and sulfate nano-particles at altitudes up to about 11,000 feet ASL. In addition, in the airspace around and over Turrialba volcano, commercial and private air traffic is very low.

A long-term project goal is to develop the means to sample drifting ash and gas in volcanic plumes up to 30,000 feet ASL, that result from large explosive eruptions such as those that crippled aviation traffic in Iceland and Europe in the spring of 2010.

.


Related Links
HyspIRI Mission Study
NASA's Airborne Science Program
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SHAKE AND BLOW
Iceland volcanoes said growing threat
London (UPI) Apr 3, 2013
British researchers say some Icelandic volcanoes could produce eruptions just as explosive as those in the Pacific Rim, with disruptive ash clouds. Previously, scientists had thought that Icelandic magma was less "fizzy" - containing less volcanic gases like carbon dioxide - than that in Pacific Ocean volcanoes, and expected much less explosive eruptions by comparison. However ... read more


SHAKE AND BLOW
Characterizing The Lunar Radiation Environment

Russia rekindles Moon exploration program, intends setting up first human outposts there

Pre-existing mineralogy may survive lunar impacts

Lunar cycle determines hunting behaviour of nocturnal gulls

SHAKE AND BLOW
Astronaut's radiation study will be critical for Mars mission

Remaining Martian Atmosphere Still Dynamic

Registration Opens for NASA Night Rover Energy Challenge

Final MAVEN Instrument Integrated to Spacecraft

SHAKE AND BLOW
Underwater for outer space

NASA Celebrates Four Decades of Plucky Pioneer 11

Do Intellectual Property Rights on Existing Technologies Hinder Subsequent Innovation

Boeing Completes Preliminary Design Review for Connection Between CST-100 Spacecraft and Rocket

SHAKE AND BLOW
Shenzhou's Shadow Crew

Shenzhou 10 sent to launch site

China's Next Women Astronauts

Shenzhou 10 - Next Stop: Jiuquan

SHAKE AND BLOW
Spooky action at a distance aboard the ISS

First data released from the Alpha Magnetic Spectrometer

Alpha Magnetic Spectrometer Team Publishes First Findings

New crew takes express ride to space station

SHAKE AND BLOW
Arianespace receives the second Vega for launch from French Guiana

Future Looks Bright for Private US Space Ventures

Europe's next ATV resupply spacecraft enters final preparatio?ns for its Ariane 5 launch

ILS Proton Launches Satmex 8 Satellite for Satmex

SHAKE AND BLOW
Retired Star Found With Planets And Debris Disc

The Great Exoplanet Debate

NASA Selects Explorer Investigations for Formulation

The Great Exoplanet Debate Part Four

SHAKE AND BLOW
Accidental discovery may lead to improved polymers

What's between a slip and a slide?

Light may recast copper as chemical industry 'holy grail'

New camera system creates high-resolution 3-D images from up to a kilometer away




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement