Subscribe free to our newsletters via your
. 24/7 Space News .




WATER WORLD
Mixing it up: Study provides new insight into Southern Ocean behaviour
by Staff Writers
Southampton, UK (SPX) Jul 21, 2014


This image shows sensors from the DIMES project being used in the Drake Passage. Image courtesy Katy Sheen.

A new study has found that turbulent mixing in the deep waters of the Southern Ocean, which has a profound effect on global ocean circulation and climate, varies with the strength of surface eddies - the ocean equivalent of storms in the atmosphere - and possibly also wind speeds.

It is the first study to link eddies at the surface to deep mixing on timescales of months to decades.

This new insight into how the Southern Ocean behaves will allow scientists to build computer models that can better predict how our climate is going to change in the future. The findings are published in the latest issue of Nature Geoscience.

The Southern Ocean plays a pivotal role in the global overturning circulation, a system of surface and deep currents linking all oceans and one of the fundamental determinants of the planet's climate.

The Southern Ocean around Antarctica is the only location where the ocean can circulate freely all the way around the globe without continental barriers.

Because the ocean is made up of many layers of water that are dependent on temperature and salinity, water moves easily along horizontal or 'isopycnal' layers, but mixes only slowly across the layers, known as 'diapycnal' mixing.

This combination of diapycnal and isopycnal mixing drives the upwelling of deep waters up to the surface, forming an 'upper' and 'lower' overturning cell.

When deep waters rise to the surface, they bring with them the nutrients that plankton need to grow. Conversely, as surface waters sink they take heat and dissolved CO2 from the atmosphere, strongly shaping regional and global climate change.

The researchers took measurements of small-scale temperature and velocity fluctuations, to measure the diapycnal movements in the Antarctic Circumpolar Current (ACC) across the Drake Passage region of the Southern Ocean.

The data revealed that, during the period of their measurements, turbulence in deep waters significantly correlated with surface eddy activity. The mechanism that causes eddies in the surface ocean leads to an intensification of currents in the top and bottom layers of the ocean.

When such instability arises, strengthened bottom currents interact with rough bottom topography to generate internal waves that eventually devolve into turbulence. This process provides a source of energy for the mixing of abyssal waters, which, in turn, hastens the global overturning circulation.

The researchers established that deep water eddies are likely energised by strong westerly winds over the Southern Ocean that force the ACC and that abyssal mixing, on time scales of months to decades, reacts to this changing atmospheric climate.

Study co-author Katy Sheen, a Postdoctoral Research Fellow from Ocean and Earth Science at the University of Southampton, says: "These findings will help us to understand the processes that drive the ocean circulation and mixing so that we can better predict how our Earth system will respond to the increased levels of carbon dioxide that we have released into the atmosphere."

The researchers used data from the 'Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean' (DIMES) project, a UK/US field program aimed at measuring diapycnal and isopycnal mixing in the Southern Ocean. DIMES released a chemical dye tracer into the ACC about a mile below the sea surface.

Over five years, the horizontal and vertical spread of the tracer was mapped out by measuring its concentration in hundreds of seawater samples, to identify how quickly the Southern Ocean moved water particles around.

It also used a mooring cluster of sensors in the Drake Passage to provide detailed time series information on the processes responsible for the mixing of the tracer.

.


Related Links
University of Southampton
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
Whale shark fringe migration
Ponta Delgada, Portugal (SPX) Jul 18, 2014
At the fringe of the whale shark range, the volcanic Azore islands may play an increasing role for the north Atlantic population as sea surface temperatures rise, according to a study published July 16, 2014 in the open-access journal PLOS ONE by Pedro Afonso from University of the Azores and colleagues. Whale sharks prefer tropical waters in the range of 26-30+ C, but studies have shown ... read more


WATER WORLD
Landsat Looks to the Moon

Sky-gazers can expect one 'Supermoon' per month for the next three months

NASA LRO's Moon As Art Collection Is Revealed

Solar photons drive water off the moon

WATER WORLD
Curiosity Finds Iron Meteorite on Mars

'Dry Ice' Cause of Gullies on Mars

Further Evidence of Dry Ice Gullies on Mars

NASA Mars Orbiter Views Rover Crossing Into New Zone

WATER WORLD
Scotland Dominates Locations List For UK Spaceport

Sun Sends More 'Tsunami Waves' to Voyager 1

Taiwan's tourism revenue hits record high in 2013

Privately funded solar spacecraft to launch in 2016

WATER WORLD
Chinese moon rover designer shooting for Mars

Yutu designer's bittersweet

Are China's Astronauts Moonbound

Chinese scientists prepare for lunar base life support system

WATER WORLD
Orbital cargo ship reaches International Space Station

Fruit Flies on the ISS

Russian Scientists Develop Liquid Test System for ISS

Crew Awaits Cygnus Arrival and Progress Departure

WATER WORLD
Sanctions on Russian launchers confers advantage to others

Orbital launches cargo ship to space station

Arianespace launches O3b Networks via Soyuz rocket

RUAG Space wins major Ariane 5 payload fairing contract

WATER WORLD
Friction from Tides Could Help Distant Earths Survive, and Thrive

Newfound Frozen World Orbits in Binary Star System

Discovery expands search for Earth-like planets

Astronomers discover most Earth-like of all exoplanets

WATER WORLD
Sandstone arches formed by gravity and stress, not erosion

19th Century Math Tactic Tweak Yields Answers 200 Times Faster

New material puts a twist in light

Efficient structures help build a sustainable future




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.