Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Microreactors to produce explosive materials
by Staff Writers
Pfinztal, Germany (SPX) Jun 01, 2012


Microreactors can e.g. be used to produce explosive materials much more safely. Image courtesy Fraunhofer ICT

The larger the reaction vessel, the quicker products can be made - or so you might think. Microreactors show just how wrong that assumption is: in fact, they can be used to produce explosive materials - nitroglycerine, for instance - around ten times faster than in conventional vessels, and much more safely as well. At the ACHEMA trade fair in Frankfurt, researchers will demonstrate microreactors they use for a very broad range of chemical processes.

If the task is to tunnel through a mountain, workers turn to explosives: the 15-kilometer-long Gotthard Tunnel, for instance, was created by blasting through the rock with explosive gelatin made largely out of the nitroglycerine - better-known as dynamite. Producing these explosives calls for extreme caution. After all, no one wants a demonstration of explosive force in the lab.

Because the production process generates heat, it must proceed slowly: drop for drop, the reagents are added to the agitating vessel that holds the initial substance. A mixture that heats up too suddenly can cause an explosion. The heat generated cannot be permitted to exceed the heat dissipated.

Researchers at the Fraunhofer Institute for Chemical Technology ICT in Pfinztal have developed a method for safer production of nitroglycerine: a microreactor process, tailored to this specific reaction.

What makes the process safer are the tiny quantities involved. If the quantities are smaller, less heat is generated. And because the surface is very expansive compared to the volume involved, the system is very easy to cool. Another benefit: the tiny reactor produces the explosive material considerably faster than in agitating vessels.

Unlike a large agitating vessel filled before the slow reaction proceeds, the microreactor works continuously: the base materials flow through tiny channels into the reaction chamber in "assembly-line fashion".

There, they react with one another for several seconds before flowing through other channels into a second microreactor for processing - meaning purification. This is because the interim product still contains impurities that need to be removed for safety reasons.

Purification in the microreactor functions perfectly: the product produced meets pharmaceutical specifications and in a modified form can even be used in nitro capsules for patients with heart disease.

"This marks the first use of microreactors in a process not only for synthesis of a material but also for its subsequent processing," observes Dr. Stefan Lobbecke, deputy division director at ICT. The microreactor process is already successfully in use in industry.

When developing a microreactor, researchers match the reactors to the reaction desired: how large may the channels be to ensure that the heat generated can be dissipated effectively?

Where do researchers need to build impediments into the channels to ensure that the fluids are well blended and the reaction proceeds as planned? Another important parameter is the speed with which the liquids flow through the channels: on the one hand, they need enough time to react with one another, while on the other the reaction should come to an end as soon as the product is formed. Otherwise, the result might be too many unwanted by-products.

While microreactors suggest themselves for explosive materials, this is not the only conceivable application: researchers at ICT build reactors for every chemical reaction conceivable - and each is tailored to the particular reaction involved. Just one of numerous other examples is a microreactor that produces polymers for OLEDs. OLEDs are organic light-emitting diodes that are particularly common in displays and monitors.

The polymers of which the OLEDs are made light up in colors. Still, when they are produced - synthesized - imperfections easily arise that rob the polymers of some of their luminosity. "Through precise process management, we are able to minimize the number of these imperfections," Lobbecke points out.

To accomplish this, researchers first analyzed the reaction in minute detail: When do the polymers form? When do the imperfections arise? How fast does the process need to be?

"As it turns out, many of the reaction protocol that people are familiar with from batch processes are unnecessary. Often, the base materials don't need to boil for hours at a time; in many cases all it takes is a few seconds," the researcher has found. Long periods spent boiling can cause the products to decompose or generate unwanted byproducts.

To develop and perfect a microreactor for a new reaction, the researchers study the ongoing reaction in real time - peering into the reactor itself, so to speak. Various analytical procedures are helpful in this regard: some, such as spectroscopic techniques, reveal which kinds of products are created in the reactor - and thus how researchers can systematically increase yields of the desired product, possibly even preventing by products from forming in the first place.

Other analytical methods, such as calorimetry, provide scientists with information about the heat released over the course of a reaction.

This measurement method tells them how quickly and completely the reaction is proceeding. It also provides an indication of how the process conditions need to be selected to ensure that the reaction proceeds safely.

Researchers will be presenting a variety of microreactors, microreactor processes and process-analytical techniques at the ACHEMA trade fair from June 18-22 in Frankfurt.

.


Related Links
Fraunhofer
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
VTT researcher finds explanation for friction
Helsinki, Finland (SPX) May 31, 2012
Friction is a key phenomenon in applied physics, whose origin has been studied for centuries. Until now, it has been understood that mechanical wear-resistance and fluid lubrication affect friction, but the fundamental origin of sliding friction has been unknown. Dr. Lasse Makkonen, Principal Scientist at VTT Technical Research Centre of Finland, has now presented an explanation for the or ... read more


TECH SPACE
UA Lunar-Mining Team Wins National Contest

NASA Lunar Spacecraft Complete Prime Mission Ahead of Schedule

NASA Offers Guidelines To Protect Historic Sites On The Moon

Neil Armstrong gives rare interview - to accountant

TECH SPACE
Wind may have driven avalanches on Martian dunes

On The Hunt For Light-Toned Veins Of Gypsum

Mars missions may learn from meteor Down Under

Waking Up with the Sun's Rays

TECH SPACE
New Moon for India

Boeing Completes Software PDR Of New Crew Ship

NASA hails 'new era' in exploration

CU astronaut-alumnus Scott Carpenter looks back at 50th anniversary of Aurora 7 mission

TECH SPACE
Why is China sending a woman into space?

China launches telecommunication satellite

Tiangong 1 Ready To Meet Shenzhou 9

Sri Lanka plans to launch its first satellite in 2015

TECH SPACE
Capillarity in Space - Then and Now, 1962-2012

Dragon on board

SpaceX Launches Falcon 9 Dragon on Historic Mission

SpaceX Dragon Transports Student Experiments to Space Station

TECH SPACE
SpaceX Dragon capsule splash lands in Pacific

US cargo ship on return voyage from space station

US cargo vessel prepares to leave space station

Once Upon a Time

TECH SPACE
Astronomers Probe 'Evaporating' Planet Around Nearby Star with Hobby-Eberly Telescope

Venus transit may boost hunt for other worlds

NSO To Use Venus Transit To Fine-Tune Search For Other Worlds

Newfound exoplanet may turn to dust

TECH SPACE
Netflix tops Apple in booming US online movies

The finest gold dust in the world

Microreactors to produce explosive materials

Short movies stored in an atomic vapor




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement