. | . |
Microagents with revolutionary potential by Staff Writers Zurich, Switzerland (SPX) Mar 28, 2016
Salvador Pane was on a trolleybus in Zurich one day after work. He was deep in thought when the bus came to a sudden stop because the cable was disrupted. He was struck by an idea: "Why can't we create a microrobot that generates an electric field wirelessly?" The idea stayed with him and, as a result, the ETH researcher and his colleagues have since succeeded in creating tiny particles that can be precisely controlled by magnetic fields and also generate electric fields. This may sound relatively unspectacular to the uninitiated, but it is a breakthrough. What makes it unique is that a microstructure with a single source of energy is not only moved, but also can be brought to exercise another functionality. Until now, this had been possible only independently of each other. Pane and his team from the Institute of Robotics and Intelligent Systems have published their research results in the scientific journal Materials Horizons. Their findings could one day revolutionise medicine.
Like the layers of a lasagne "You have to imagine it like a lasagne with two layers: one layer responds to the field by changing its volume. These materials are magnetostrictive," explains Pane. "Due to the stress transferred, the second piezoelectric layer becomes electrically polarized. The scientists have made good use of this effect: they coated the microparticles on one side with two different metal layers, one of cobalt ferrite (magnetostrictive) and the other of barium titanate (piezoelectric) - two layers of the lasagne. When a magnetic field is generated around the particles, the inner layer of cobalt ferrite expands and the outer layer of barium titanate deforms, generating an electric field around the microparticles. The magnetoelectric effect was demonstrated by inducing electrochemical reactions.
Bringing drugs to their targets "We could equip the microrobots with drugs, for example, and target them directly at cancerous tumours in the body, where they would then unload their cargo via the stimulus of the generated electric field," explains Pane. "This would virtually eliminate the side-effects of cancer drugs because only the cancer cells would be attacked. In addition, the precise application would significantly increase the efficacy of cancer therapies." However, other applications, such as the wireless electrical stimulation of cells, could expand regenerative medicine in a revolutionary way.
Much research before application "A lot of experiments still need to be done," says Pane. He cites corrosion as an example: "This is often overlooked at the micro and nanoscale, but it needs to be thoroughly investigated." Corrosion is capable of affecting not only the function of a device but can also cause contamination. "We have to look very carefully if we want to use a technology for a medical application," emphasises the researcher. For this reason, in the development of micro and nanorobots his team is not limiting itself to technical feasibility alone, but is also exploring the compatibility, toxicity and efficiency of the robots. Pane is convinced that the microrobots will one day have the potential to make an important contribution in the field of biomedicine. It would be the (provisional) end of a journey that began on a Zurich trolleybus. Chen X-Z, Shamsudhin N, Hoop M, Pieters R, Siringil E, Sakar MS, Nelson BJ, Pane S: Magnetoelectric micromachines with wirelessly controlled navigation and functionality. Materials Horizons 2016, 3: 113-118, doi: 10.1039/C5MH00259A
Related Links ETH Zurich Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |