Subscribe free to our newsletters via your
. 24/7 Space News .




DEEP IMPACT
Meteorite that doomed dinosaurs remade forests
by Staff Writers
Tempe AZ (SPX) Sep 18, 2014


This is a fossilized leaf of Vitis stantonii, a grapelike plant from the Hell Creek Formation in North Dakota. Blonder is especially interested in the venation network of each leaf, because veins may be a very good proxy for temperature via their role in constraining leaf water usage. "Fortunately many fossils have exquisite preservation of veins," he said. Image courtesy Benjamin Blonder.

The meteorite impact that spelled doom for the dinosaurs 66 million years ago decimated the evergreens among the flowering plants to a much greater extent than their deciduous peers, according to a study led by UA researchers. The results are published in the journal PLOS Biology.

Applying biomechanical formulas to a treasure trove of thousands of fossilized leaves of angiosperms - flowering plants excluding conifers - the team was able to reconstruct the ecology of a diverse plant community thriving during a 2.2 million-year period spanning the cataclysmic impact event, believed to have wiped out more than half of plant species living at the time.

The researchers found evidence that after the event, fast-growing, deciduous angiosperms had replaced their slow-growing, evergreen peers to a large extent. Living examples of evergreen angiosperms, such as holly and ivy, tend to prefer shade, don't grow very fast and sport dark-colored leaves.

"When you look at forests around the world today, you don't see many forests dominated by evergreen flowering plants," said the study's lead author, Benjamin Blonder, who graduated last year from the lab of UA Professor Brian Enquist with a Ph.D. from the UA's Department of Ecology and Evolutionary Biology and is now the science coordinator at the UA SkySchool.

"Instead, they are dominated by deciduous species, plants that lose their leaves at some point during the year."

The study provides much-needed evidence for how the extinction event unfolded in the plant communities at the time, Blonder said. While it was known that the plant species that existed before the impact were different from those that came after, data was sparse on whether the shift in plant assemblages was just a random phenomenon or a direct result of the event.

"If you think about a mass extinction caused by catastrophic event such as a meteorite impacting Earth, you might imagine all species are equally likely to die," Blonder said.

"Survival of the fittest doesn't apply - the impact is like a reset button. The alternative hypothesis, however, is that some species had properties that enabled them to survive.

"Our study provides evidence of a dramatic shift from slow-growing plants to fast-growing species," he said.

"This tells us that the extinction was not random, and the way in which a plant acquires resources predicts how it can respond to a major disturbance. And potentially this also tells us why we find that modern forests are generally deciduous and not evergreen."

Previously, other scientists found evidence of a dramatic drop in temperature caused by dust from the impact. Under the conditions of such an "impact winter," many plants would have struggled harvesting enough sunlight to maintain their metabolism and growth.

"The hypothesis is that the impact winter introduced a very variable climate," Blonder said. "That would have favored plants that grew quickly and could take advantage of changing conditions, such as deciduous plants."

Blonder, Enquist and their colleagues Dana Royer from Wesleyan University, Kirk Johnson from the Smithsonian National Museum of Natural History and Ian Miller from the Denver Museum of Nature and Science studied a total of about 1,000 fossilized plant leaves collected from a location in southern North Dakota, embedded in rock layers known as the Hell Creek Formation, in what at the time was a lowland floodplain crisscrossed by river channels.

The collection consists of more than 10,000 identified plant fossils and is housed primarily at the Denver Museum of Nature and Science.

By analyzing leaves, which convert carbon dioxide from the atmosphere and water into nutrients for the plant, the study followed a new approach that enabled the researchers to predict how plant species used carbon and water, shedding light on the ecological strategies of plant communities long gone, hidden under sediments for many millions of years.

"We measured the mass of a given leaf in relation to its area, which tells us whether the leaf was a chunky, expensive one to make for the plant, or whether it was a more flimsy, cheap one," Blonder explained. "In other words, how much carbon the plant had invested in the leaf."

In addition to the leaves' mass-per-area ratio, Blonder and his coworkers measured the density of the leaves' vein networks.

"When you hold a leaf up to the light, you see a pattern of veins running through it," Blonder said. "That network determines how much water is moved through the leaf. If the density is high, the plant is able to transpire more water, and that means it can acquire carbon faster.

"By comparing the two parameters, we get an idea of resources invested versus resources returned, and that allows us to capture the ecological strategy of the plants we studied long after they went extinct."

Evergreen plants are more likely to invest in leaves that are costly to construct but are well-built and last a long time, Blonder explained, while the leaves of deciduous plants tend to be short-lived but offer high metabolic rates.

"There is a spectrum between fast- and slow-growing species," he said. "There is the 'live fast, die young' strategy and there is the 'slow but steady' strategy. You could compare it to financial strategies investing in stocks versus bonds."

The analyses revealed that while slow-growing evergreens dominated the plant assemblages before the extinction event, fast-growing flowering species had taken their places afterward.

The National Science Foundation awarded Blonder a graduate research fellowship to pursue this research. Additional funding was provided by the Geological Society of America.

Blonder said he was inspired to pursue the research project after seeing a lecture on paleobiology at the UA.

"I had a strong interest in how plants function based on their leaves, and I was fascinated to learn about applying those biomechanical principles to reconstruct ecological functions of the past," he said.

"When you hold one of those leaves that is so exquisitely preserved in your hand knowing it's 66 million years old, it's a humbling feeling."

.


Related Links
University of Arizona
Asteroid and Comet Impact Danger To Earth - News and Science






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








DEEP IMPACT
NASA asteroid defense program falls short: audit
Washington (AFP) Sept 15, 2014
The US space agency's program to detect and protect the Earth from incoming asteroids is poorly managed and far behind schedule, said a government audit report on Monday. Just one million of the program's $40 million annual budget is spent on strategies to deflect an incoming asteroid or evacuate areas in danger of impact, said the report by NASA inspector General Paul Martin. NASA was t ... read more


DEEP IMPACT
Year's final supermoon is a Harvest Moon

China Aims for the Moon, Plans to Bring Back Lunar Soil

Electric Sparks May Alter Evolution of Lunar Soil

China to test recoverable moon orbiter

DEEP IMPACT
Martian meteorite yields more evidence of the possibility of life on Mars

MAVEN on course for Mars Arrival Sept 21

Flash-Memory Reformat Successful

NASA's Mars Curiosity rover reaches 'far frontier'

DEEP IMPACT
Space: China's final tourism frontier

NASA Chooses American Companies to Transport US Astronauts to ISS

The long descent

NASA's Orion Spacecraft Nears Completion, Ready for Fueling

DEEP IMPACT
China eyes working with other nations as station plans develop

Astronauts eye China's future space station

China completes construction of advanced space launch facility

China to launch second space lab in 2016: official

DEEP IMPACT
CASIS Research Set for Launch Aboard SpaceX Mission to ISS

SpaceX To Deliver Science Experiments To ISS For Ames

Boeing, SpaceX to send astronauts to space station

4th SpaceX Cargo Mission to ISS Dragon Scheduled for Sep 20

DEEP IMPACT
NASA's Wind-Watching ISS-RapidScat Ready for Launch

Elon Musk gets fresh challenge with space contract

Proton Launches May Compete on Price With US Falcons

SpaceX's next cargo launch set for Sept 20

DEEP IMPACT
Solar System Simulation Reveals Planetary Mystery

Chandra Finds Planet That Makes Star Act Deceptively Old

'Hot Jupiters' provoke their own host suns to wobble

First evidence for water ice clouds found outside solar system

DEEP IMPACT
NASA Awards Cross-track Infrared Sounder For JPS System-2 Bird

Not just cool - it's a gas

Microsoft powers up game platform with 'Minecraft'

Researchers control surface tension to manipulate liquid metals




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.