. | . |
Meltwater from the Greenland ice sheet releasing faster by Staff Writers Zurich, Switzerland (SPX) Jan 05, 2016
The firn layers of the Greenland ice sheet might store less meltwater than previously assumed. Researchers from the USA, Denmark and the University of Zurich fear that this could lead to increased release of the meltwater into the oceans. The near-surface layers of the Greenland ice sheet are made up of snow that is gradually being converted into glacier ice. In Greenland this firn layer is up to 80 m thick. As researchers from Denmark, the USA and the University of Zurich have demonstrated, the current atmospheric warming is changing this firn layer such that resulting meltwater is being released faster than previously anticipated. "Basically our research shows that the firn reacts fast to a changing climate. Its ability to limit mass loss of the ice sheet by retaining meltwater could be smaller than previously assumed", sums up Horst Machguth, lead author of the study by the University of Zurich. The researchers travelled to Greenland to investigate the impact of recent atmospheric warming on the structure of near-surface snow and ice layers, called firn. Over the course of three expeditions on the ice sheet, the researchers traversed several hundred kilometres to map the structure of the firn layers with a radar unit and by drilling regularly-spaced firn cores.
Firn layer acts sponge-like "It is unknown how the firn reacted to the recent very warm summer in Greenland. Our research aims to clarify whether the firn was indeed capable of retaining the meltwater, or whether the sponge has been overwhelmed." The scientists drilled numerous 20 metre-deep cores to sample the firn, also targeting sites where similar cores had been drilled 15 to 20 years ago. At many locations, a comparison of the new and old cores revealed substantially more ice lenses than in the past and that the firn stored the meltwater similar to a sponge. But this was not the case everywhere. Cores drilled at lower elevations indicated that the exceptional amounts of meltwater formed a surprisingly massive ice layer directly below the ice sheet surface.
Meltwater no longer percolating As a result, the many small lenses grew to form an ice layer of several meters in thickness that now acts as a lid on top of otherwise sponge-like firn. Radar measurements identified that this layer was continuous over dozens of kilometers. New meltwater, hitting that lid of ice was unable to percolate into the firn and remained at the surface. Satellite imagery shows that the water prevented from percolating collected at the surface, where it formed rivers that flow towards the margin of the ice sheet. "In contrast to storing meltwater in porous firn, this mechanism increases runoff from the ice sheet", explains Mike MacFerrin, second-author of the study and a researcher at the University of Colorado at Boulder. "This process has not previously been observed in Greenland. The total extent of this ice lid capping the ice sheet firn remains unknown. For this reason, the amount of additional ice sheet runoff associated with this newly observed process cannot yet be quantified." However, similar changes in firn structure have already been observed in the Canadian Arctic, which leads to the conclusion that this phenomenon could be widespread.
Related Links University of Zurich Beyond the Ice Age
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |