Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Measuring the magnetism of antimatter
by Staff Writers
Boston MA (SPX) Mar 27, 2013


Mason Marshall '16 (from left), Kathryn Marable '16, George Vasmer Leverett Professor of Physics Gerald Gabrielse, and Jack DiSciacca '13 have measured the magnetic charge of single particles of matter and antimatter with unprecedented precision. Photo by Katherine Taylor.

In a breakthrough that could one day yield important clues about the nature of matter itself, a team of Harvard scientists have succeeding in measuring the magnetic charge of single particles of matter and antimatter more accurately than ever before.

As described in a paper in Physical Review Letters, the ATRAP team, led by Gerald Gabrielse, the George Vasmer Leverett Professor of Physics, and including post-doctoral fellows Stephan Ettenauer and Eric Tardiff and graduate students Jack DiSciacca, Mason Marshall, Kathryn Marable and Rita Kalra was able to capture individual protons and antiprotons in a "trap" created by electric and magnetic fields.

By precisely measuring the oscillations of each particle, the team was able to measure the magnetism of a proton more than 1,000 times more accurately than an antiproton had been measured before. Similar tests with antiprotons produced a 680-fold increase in accuracy in the size of the magnet in an antiproton.

"That is a spectacular jump in precision for any fundamental quality," Gabrielse said, of the antiproton measurements. "That's a leap that we don't often see in physics, at least not in a single step."

Such measurements, Gabrielse said, could one day help scientists answer a question that seems more suited for the philosophy classroom than the physics lab - why are we here?

"One of the great mysteries in physics is why our universe is made of matter," he said. "According to our theories, the same amount of matter and antimatter was produced during the Big Bang. When matter and antimatter meet, they are annihilated. As the universe cools down, the big mystery is: Why didn't all the matter find the antimatter and annihilate all of both? There's a lot of matter and no antimatter left, and we don't know why."

Making precise measurements of protons and antiprotons, Gabrielse explained, could begin to answer those questions by potentially shedding new light on whether the CPT (Charge conjugation, Parity transformation, Time reversal) theorem is correct. An outgrowth of the standard model of particle physics, CPT states that the protons and antiprotons should be virtually identical - with the same magnitude of charge and mass - yet should have opposite charges.

Though earlier experiments, which measured the charge-to-mass ratio of protons and antiprotons, verified the predictions of CPT, Gabrielse said further investigation is needed because the standard model does not account for all forces, such as gravity, in the universe.

"What we wanted to do with these experiments was to say, 'Let's take a simple system - a single proton and a single antiproton - and let's compare their predicted relationships, and see if our predictions are correct," Gabrielse said. "Ultimately, whatever we learn might give us some insight into how to explain this mystery."

While researchers were able to capture and measure protons with relative ease, antiprotons are only produced by high-energy collisions that take place at the extensive tunnels of the CERN laboratory in Geneva, Gabrielse said, leaving researchers facing a difficult choice.

"Last year, we published a report showing that we could measure a proton much more accurately than ever before," Gabrielese said. "Once we had done that, however, we had to make a decision - did we want to take the risk of moving our people and our entire apparatus - crates and crates of electronics and a very delicate trap apparatus - to CERN and try to do the same thing with antiprotons? Antiprotons would only be available till mid-December and then not again for a year and a half.

"We decided to give it a shot, and by George, we pulled it off," he continued. "Ultimately, we argued that we should attempt it, because even if we failed, that failure would teach us something." In what Gabrielse described as a "gutsy" choice, graduate student Jack DiSciacca agreed to use this attempt to conclude his thesis research, and new graduate students Marshall and Marable signed on to help.

Though their results still fit within the predictions made by the standard model, Gabrielse said being able to more accurately measure the characteristics of both matter and antimatter may yet help shed new light on how the universe works.

"What's also very exciting about this breakthrough is that it now prepares us to continue down this road," he said. "I'm confident that, given this start, we're going to be able to increase the accuracy of these measurements by another factor of 1,000, or even 10,000."

.


Related Links
Harvard University
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Physics of fluids explained 100 years after original discovery
Blacksburg VA (SPX) Mar 29, 2013
Sunghwan Jung is a fan of the 19th Century born John William Strutt, 3rd, also known as Lord Baron Rayleigh. An English physicist, Rayleigh, along with William Ramsay, discovered the gas argon, an achievement for which he earned the Nobel Prize for Physics in 1904. But it was Rayleigh's lesser-known discovery of a physical phenomenon in 1878 that was more intriguing to Jung. Some 135 years ... read more


TIME AND SPACE
NASA's LRO Sees GRAIL's Explosive Farewell

Amazon's Bezos recovers Apollo 11 engines

Leaping Lunar Dust

Lunar Orbiter Image Recovery Project Seeks Public Support To Retrieve Apollo Era Moon Images

TIME AND SPACE
Opportunity Heads to Matijevic Hill

Curiosity Resumes Science Investigations

Digging for hidden treasure on Mars

Sun in the Way Will Affect Mars Missions in April

TIME AND SPACE
Miners shoot for the stars in tech race

Space Innovation Center Will Help Govt Agencies Launch Future Space Missions

The Future of Exploration Starts With 3-D Printing

Lockheed Martin to Continue Providing Life Sciences Support To NASA

TIME AND SPACE
China's Next Women Astronauts

Shenzhou 10 - Next Stop: Jiuquan

China's fourth space launch center to be in use in two years

China to launch new manned spacecraft

TIME AND SPACE
Russia may recycle space station modules

New Space Station Crew Members to Launch and Dock the Same Day

ESA seeks innovators for orbiting laboratory

New ISS crew prepares for launch

TIME AND SPACE
When quality counts: Arianespace reaffirms its North American market presence

SpaceX capsule returns after ISS resupply mission

SpaceX Dragon Spacecraft Carrying NASA Cargo Ready for Return to Earth

Dragon capsule to spend extra day in space

TIME AND SPACE
The Great Exoplanet Debate

Astronomers Detect Water in Atmosphere of Distant Planet

Distant planetary system is a super-sized solar system

Water signature in distant planet shows clues to its formation

TIME AND SPACE
DARPA Envisions the Future of Machine Learning

Removing orbital debris with less risk

New 'BioShock' game takes aim at American taboos

Japan finds rich rare earth deposits on seabed: study




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement