. | . |
Measuring the expansion of the universe: Researchers focus on velocity by Staff Writers Copenhagen, Denmark (SPX) Nov 06, 2020
Ever since the astronomer Edwin Hubble demonstrated that the further apart two galaxies are, the faster they move away from each other, researchers have measured the expansion rate of the Universe (the Hubble constant) and the history of this expansion. Recently, a new puzzle has emerged, as there seems to be a discrepancy between measurements of this expansion using radiation in the early Universe and using nearby objects. Researchers from the Cosmic Dawn Center, at the Niels Bohr Institute, University of Copenhagen, have now contributed to this debate by focusing on velocity measurements. The result has been published in Astrophysical Journal. The researchers at the Cosmic Dawn Center found that the measurements of velocity used for determining the expansion rate of the Universe may not be reliable. As stated in the publication, this doesn't resolve the discrepancies, but rather hints at an additional inconsistency in the composition of the Universe.
Measuring the expansion rate of the Universe If this discrepancy is real, a new and rather dramatic reinterpretation of the development of the Universe will be the consequence. However, it is also possible that the difference in the Hubble constant could be from incorrect measurements. It is difficult to measure distances in the Universe, so many studies have focused on improving and recalibrating distance measurements. But in spite of this, over the last 4 years the disagreement has not been resolved.
The velocity of the remote galaxies is easy to measure - or so we thought However, when the researchers recently examined distance and velocity measurements from more than 1000 supernovae (exploding stars) collected during the last 25 years, they found a surprising discrepancy in their results. Albert Sneppen, Masters student at the Niels Bohr Institute explains: "We've always believed that measuring velocities was fairly straightforward and precise, but it turns out that we are actually dealing with two types of redshifts". The first type, measuring the velocity with which the host-galaxy moves away from us, is considered the most reliable. The other type of redshift measures instead the velocity of matter ejected from the exploding star inside the galaxy. Or, more precisely, the matter from the supernova moving towards us with a few percent of the velocity of light (illustration 1). After compensating for this extra movement the redshift - and velocity - of the host galaxy can be determined. But this compensation requires a precise model for the explosion. The researchers were able to determine that the results from these two different techniques result in two different expansion histories for the Universe, and therefore two different compositions as well.
Are things "broken in an interesting way?" "Even if we only use the more reliable redshifts, the supernova measurements not only continue to disagree with the Hubble constant measured from the early Universe - they also hint at a more general discrepancy regarding the composition of the Universe", she says. Associate professor at the Niels Bohr Institute Charles Steinhardt, is intrigued by these new results. "If we are actually dealing with two disagreements, it means that our current model would be "broken in an interesting way", he says. "In order to solve two problems, one regarding the composition of the Universe and one regarding the expansion rate of the Universe, rather different physical explanations are required than if we only want to explain a single discrepancy in the expansion rate".
The Scientific work continues at the Nordic Optical Telescope
Scientists carry out first space-based measurement of neutron lifetime Durham UK (SPX) Jun 12, 2020 Scientists have found a way of measuring neutron lifetime from space for the first time - a discovery that could teach us more about the early universe. Knowing the lifetime of neutrons is key to understanding the formation of elements after the Big Bang that formed the universe 13.8 billion years ago. Scientists at Durham University, UK, and Johns Hopkins Applied Physics Laboratory, USA, used data from NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecra ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |