. 24/7 Space News .
CHIP TECH
Matter waves and quantum splinters
by Staff Writers
Houston TX (SPX) Mar 27, 2019

Rice University physicists and colleagues in Austria and Brazil have shown that shaking ultracold Bose-Einstein condensates (top) can cause them to either divide into the uniform segments characteristic of Faraday waves (center) or shatter into unpredictable splinters (bottom). The frequency and amplitude of the shaking determines the outcome. (Image courtesy of Gustavo Telles/University of Sao Paulo at Sao Carlos and Jason Nguyen/Rice University)

Physicists in the United States, Austria and Brazil have shown that shaking ultracold Bose-Einstein condensates (BECs) can cause them to either divide into uniform segments or shatter into unpredictable splinters, depending on the frequency of the shaking.

"It's remarkable that the same quantum system can give rise to such different phenomena," said Rice University physicist Randy Hulet, co-author of a study about the work published online in the journal Physical Review X. Hulet's lab conducted the study's experiments using lithium BECs, tiny clouds of ultracold atoms that march in lockstep as if they are a single entity, or matter wave. "The relationship between these states can teach us a great deal about complex quantum many-body phenomena."

The research was conducted in collaboration with physicists at Austria's Vienna University of Technology (TU Wien) and Brazil's University of Sao Paulo at Sao Carlos.

The experiments harken to Michael Faraday's 1831 discovery that patterns of ripples were created on the surface of a fluid in a bucket that was shaken vertically at certain critical frequencies. The patterns, known as Faraday waves, are similar to resonant modes created on drumheads and vibrating plates.

To investigate Faraday waves, the team confined BECs to a linear one-dimensional waveguide, resulting in a cigar-shaped BEC. The researchers then shook the BECs using a weak, slowly oscillating magnetic field to modulate the strength of interactions between atoms in the 1D waveguide. The Faraday pattern emerged when the frequency of modulation was tuned near a collective mode resonance.

But the team also noticed something unexpected: When the modulation was strong and the frequency was far below a Faraday resonance, the BEC broke into "grains" of varying size. Rice research scientist Jason Nguyen, lead co-author of the study, found the grain sizes were broadly distributed and persisted for times even longer than the modulation time.

"Granulation is usually a random process that is observed in solids such as breaking glass, or the pulverizing of a stone into grains of different sizes," said study co-author Axel Lode, who holds joint appointments at both TU Wien and the Wolfgang Pauli Institute at the University of Vienna.

Images of the quantum state of the BEC were identical in each Faraday wave experiment. But in the granulation experiments the pictures looked completely different each time, even though the experiments were performed under identical conditions.

Lode said the variation in the granulation experiments arose from quantum correlations - complicated relationships between quantum particles that are difficult to describe mathematically.

"A theoretical description of the observations proved challenging because standard approaches were unable to reproduce the observations, particularly the broad distribution of grain sizes," Lode said.

His team helped interpret the experimental results using a sophisticated theoretical method, and its implementation in software, which accounted for quantum fluctuations and correlations that typical theories do not address.

Hulet, Rice's Fayez Sarofim Professor of Physics and Astronomy, and a member of the Rice Center for Quantum Materials (RCQM), said the results have important implications for investigations of turbulence in quantum fluids, an unsolved problem in physics.

Research paper


Related Links
Rice University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
Extremely accurate measurements of atom states for quantum computing
University Park PA (SPX) Mar 27, 2019
A new method allows the quantum state of atomic "qubits" - the basic unit of information in quantum computers - to be measured with twenty times less error than was previously possible, without losing any atoms. Accurately measuring qubit states, which are analogous to the one or zero states of bits in traditional computing, is a vital step in the development of quantum computers. A paper describing the method by researchers at Penn State appears March 25, 2019 in the journal Nature Physics. "We a ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Company Claims Orbital Hotel to Host 400 Space Tourists Will Be Operational By 2025

Europe Unlikely to Abandon Soyuz Once US Revives Space Shuttles - German Space Center

UAE Wants to Train More Astronauts for Arab World - Emirati Official

Space Station science return and spacecraft shuffle

CHIP TECH
Russia Launches Rokot Space Rocket to Orbit Military Satellite

Trump says US 'not involved' in Iranian rocket failure

Engine Section for NASA's SLS Rocket Moved for Final Integration

US Sanctions Iran's Space Agency, Space Research Centre Days After Failed Satellite Launch

CHIP TECH
NASA engineers attach Mars Helicopter to Mars 2020 rover

ESA Chief says discussed ExoMars 2020 launch with Roscosmos

NASA Invites Students to Name Next Mars Rover

NASA's Mars Helicopter Attached to Mars 2020 Rover

CHIP TECH
China's KZ-1A rocket launches two satellites

China's newly launched communication satellite suffers abnormality

China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

CHIP TECH
Private Chinese firms tapping international space market

Iridium and Thales Expand Partnership to Deliver Aircraft Connectivity Services

ESA re-routes satellite to avoid SpaceX collision risk

Cutting-edge Chinese satellite malfunctions after launch

CHIP TECH
ESA spacecraft dodges large constellation

Smarter experiments for faster materials discovery

China's Tianhe-2 Supercomputer to Crunch Space Data From New Radio Telescope

Defrosting surfaces in seconds

CHIP TECH
Planetary collisions can drop the internal pressures in planets

Potassium Detected in an Exoplanet Atmosphere

Deep-sea sediments reveal solar system chaos: An advance in dating geologic archives

Exoplanets Can't Hide Their Secrets from Innovative New Instrument

CHIP TECH
Storms on Jupiter are disturbing the planet's colorful belts

ALMA shows what's inside Jupiter's storms

Young Jupiter was smacked head-on by massive newborn planet

Mission to Jupiter's icy moon confirmed









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.