Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Manipulating and Detecting Ultrahigh Frequency Sound Waves
by Staff Writers
Berkeley CA (SPX) Jun 16, 2014


Xiang Zhang, Haim Suchowski and Kevin O'Brien were part of the team that produced, detected and controlled ultrahigh frequency sound waves at the nanometer scale. Image courtesy Roy Kaltschmidt.

An advance has been achieved towards next generation ultrasonic imaging with potentially 1,000 times higher resolution than today's medical ultrasounds. Researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have demonstrated a technique for producing, detecting and controlling ultrahigh frequency sound waves at the nanometer scale.

Through a combination of subpicosecond laser pulses and unique nanostructures, a team led by Xiang Zhang, a faculty scientist with Berkeley Lab's Materials Sciences Division, produced acoustic phonons - quasi-particles of vibrational energy that move through an atomic lattice as sound waves - at a frequency of 10 gigahertz (10 billion cycles per second).

By comparison, medical ultrasounds today typically reach a frequency of only about 20 megahertz (20 million cycles per second.) The 10GHz phonons not only promise unprecedented resolution for acoustic imaging, they also can be used to "see" subsurface structures in nanoscale systems that optical and electron microscopes cannot.

"We have demonstrated optical coherent manipulation and detection of the acoustic phonons in nanostructures that offer new possibilities in the development of coherent phonon sources and nano-phononic devices for chemical sensing, thermal energy management and communications," says Zhang, who also holds the Ernest S. Kuh Endowed Chair Professor at the University of California (UC) Berkeley.

In addition, he directs the National Science Foundation's Nano-scale Science and Engineering Center, and is a member of the Kavli Energy NanoSciences Institute at Berkeley.

Zhang is the corresponding author of a paper describing this research in Nature Communications. The paper is titled "Ultrafast Acousto-plasmonic Control and Sensing in Complex Nanostructures."

The lead authors are Kevin O'Brien and Norberto Daniel Lanzillotti-Kimura, members of Zhang's research group. Other co-authors are Junsuk Rho, Haim Suchowski and Xiaobo Yin.

Acoustic imaging offers certain advantages over optical imaging. The ability of sound waves to safely pass through biological tissue has made sonograms a popular medical diagnostic tool. Sound waves have also become a valuable tool for the non-destructive testing of materials.

In recent years, ultrahigh frequency sound waves have been the subject of intense scientific study. Phonons at GHz frequencies can pass through materials that are opaque to photons, the particles that carry light. Ultrahigh frequency phonons also travel at the small wavelengths that yield a sharper resolution in ultrasound imaging.

The biggest challenge has been to find effective ways of generating, detecting and controlling ultrahigh frequency sound waves. Zhang, O'Brien, Lanzillotti-Kimura and their colleagues were able to meet this challenge through the design of nanostructures that support multiple modes of both phonons and plasmons. A plasmon is a wave that rolls through the conduction electrons on the surface of a metal.

"Through the interplay between phonons and localized surface plasmons, we can detect the spatial properties of complex phonon modes below the optical wavelength," O'Brien says. "This allows us to detect complex nanomechanical dynamics using polarization-resolved transient absorption spectroscopy."

Plasmons can be used to confine light in subwavelength dimensions and are considered to be good candidates for manipulating nanoscale mechanical motion because of their large absorption cross-sections, subwavelength field localization, and high sensitivity to geometry and refractive index changes.

"To generate 10 GHz acoustic frequencies in our plasmonic nanostructures we use a technique known as picosecond ultrasonics," O'Brien says.

"Sub-picosecond pulses of laser light excite plasmons which dissipate their energy as heat. The nanostructure rapidly expands and generates coherent acoustic phonons. This process transduces photons from the laser into coherent phonons."

To detect these coherent phonons, a second laser pulse is used to excite probe surface plasmons. As these plasmons move across the surface of the nanostructure, their resonance frequency shifts as the nanostructure geometry becomes distorted by the phonons. This enables the researchers to optically detect mechanical motion on the nanoscale.

"We're able to sense ultrafast motion along the different axes of our nanostructures simply by rotating the polarization of the probe pulse," says Lanzillotti-Kimura.

"Since we've shown that the polarization of the pump pulse doesn't make a difference in our nanostructures due to hot electron diffusion, we can tailor the phonon modes which are excited by designing the symmetry of the nanostructure."

The plasmonic nanostructures that Zhang, O'Brien, Lanzillotti-Kimura and their colleagues designed are made of gold and shaped like a Swiss-cross. Each cross is 35 nanometers thick with horizontal and vertical arm lengths of 120 and 90 nanometers, respectively. When the two arms oscillate in phase, the crosses generate symmetric phonons. When the arms oscillate out of phase, anti-symmetric phonons are generated.

"The phase differences in the phonon modes produce an interference effect that allow us to distinguish between symmetric and anti-symmetric phonon modes using localized surface plasmons," O'Brien says.

"Being able to generate and detect phonon modes with different symmetries or spatial distributions in a structure improves our ability to detect nanoscale motion and is a step towards some potential applications of ultrahigh frequency acoustic phonons."

By allowing researchers to selectively excite and detect GHz mechanical motion, the Swiss-cross design of the plasmonic nanostructures provides the control and sensing capabilities needed for ultrahigh frequency acoustic imaging.

For the material sciences, the acoustic vibrations can be used as nanoscale "hammers" to impose physical strains along different axes at ultrahigh frequencies. This strain can then be detected by observing the plasmonic response. Zhang and his research group are planning to use these nanoscale hammers to generate and detect ultrafast vibrations in other systems such as two-dimensional materials.

.


Related Links
Lawrence Berkeley National Laboratory (Berkeley Lab)
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Long-range tunneling of quantum particles
Innsbruck, Austria (SPX) Jun 13, 2014
One of the most remarkable consequences of the rules in quantum mechanics is the capability of a quantum particle to penetrate through a potential barrier even though its energy would not allow for the corresponding classical trajectory. This is known as the quantum tunnel effect and manifests itself in a multitude of well-known phenomena. For example, it explains nuclear radioactive decay ... read more


TIME AND SPACE
Solar photons drive water off the moon

55-year old dark side of the moon mystery solved

New evidence supporting moon formation via collision of 2 planets

NASA Missions Let Scientists See Moon's Dancing Tide From Orbit

TIME AND SPACE
Discovery of Earth's Northernmost Perennial Spring

US Congress and Obama administration face obstacles in Mars 2030 project

Opportunity Recovering From Flash Memory Problems

Rover Corrects its Spacecraft Clock

TIME AND SPACE
Coffee for cosmonauts! First 'ISSpresso' machine to arrive in space

Complexity of Sample Return Robot Competition Challenges 17 Teams

Wealthy Chinese buy space flight tickets: report

Boeing reveals prototype spacecraft for human transport

TIME AND SPACE
Chinese lunar rover alive but weak

China's Jade Rabbit moon rover 'alive but struggling'

Chinese space team survives on worm diet for 105 days

Moon rover Yutu comes closer to public

TIME AND SPACE
US expects to continue partnership with Russia on ISS after 2020

Station Crew Wraps Up Week With Medical Research

Decontamination System to Up Research on Space Station

D-Day for the International Space Station

TIME AND SPACE
Nasa readies satellite to measure atmospheric CO2

Arianespace A World Leader In The Satellite Launch Market

Airbus Group and Safran To Join Forces in Launcher Activities

US not able yet to remove dependency on Russian rocket motors

TIME AND SPACE
Kepler space telescope ready to start new hunt for exoplanets

Astronomers Confounded By Massive Rocky World

Two planets orbit nearby ancient star

First light for SPHERE exoplanet imager

TIME AND SPACE
NASA's abandoned ISEE-3 craft to return to Earth's orbit

Breakthrough for information technology using Heusler materials

PlayStation lets Sony grab for home entertainment crown

3D printer cleared for lift-off to ISS in August




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.