. | . |
Making waves with the hot electrons within Earth's radiation belts by Staff Writers Washington DC (SPX) Jun 22, 2017
Encircling the Earth, within its magnetosphere, are two concentric, doughnut-shaped radiation belts known as the Van Allen belts. The Van Allen belts swell and recede in response to incoming energy from the sun, sometimes billowing far enough to expose orbiting satellites and other spacecraft to damaging radiation that can disrupt electronic communications and navigation signals, as well as electric grids. These radiation belt electrons travel near the speed of light and emit and absorb waves that are used by scientists to understand space weather. An international team of scientists recently discovered the role that hot electrons may play in the waves and fluctuations detected by satellites. The research team reports its findings this week in Physics of Plasmas, from AIP Publishing. Their results are based on data collected by the Van Allen Probes, twin robotic spacecraft launched by NASA in 2012 to help scientists better understand these belt regions. Previous research has focused on low-frequency electromagnetic waves emitted from cold electrons as the major cause of acceleration and loss of relativistic electrons. These wave-particle interactions directly affect the width of the bands. Low-frequency waves include whistler-mode plasma waves, so named for the hissing or static sound they make that is audible through a speaker. This general theory describes electrons from solar wind interacting with these low-frequency plasma waves. This causes the electrons to gain a tremendous amount of energy from the amplification of the whistler-mode waves via the surrounding plasmasphere. However, according to the research team, low-frequency waves are typically associated with active magnetospheric conditions, which don't always occur. In contrast, high-frequency quasi-electrostatic (ES) fluctuations in the upper-hybrid frequency are a constant and pervasive feature in the Earth's radiation belt environment, as was recently discovered through new data from the Van Allen Probes. "Occasional low-frequency waves with extremely large amplitudes may suddenly accelerate the electrons," said Junga Hwang, principal researcher at the Korea Astronomy and Space Science Institute in South Korea and a co-author of the paper. "But we believe that it is the high-frequency ES fluctuations that are constantly emitted and reabsorbed by the hot electrons, which allow these radiation belt electrons to remain inside the outer Van Allen band for a long time." In their study, the researchers looked at electrons at three energy ranges: cold electrons, hot electrons and relativistic electrons. Cold electrons mainly contribute to the background electron density. Hot electrons are known as the main source for wave making. The relativistic electrons, meanwhile, result from particle acceleration processes, but they don't influence average plasma characteristics. The researchers chose "quiet-time" intervals to study the high-frequency waves when the low-frequency plasma waves were absent. "Since hot electrons constitute only a small fraction of the total electron number density, the general thought has been that the upper-hybrid fluctuations are useful only as a tool for indirectly measuring the cold electron number density," Hwang said. "However, the data from the Van Allen Probes showed that upper-hybrid ES (electrostatic) fluctuations pervasively and ubiquitously exist in the radiation belts. From there, we proved that the presence of hot electrons and upper-hybrid fluctuations are mutually related phenomenon." The article, "Roles of hot electrons in generating upper-hybrid waves in the earth's radiation belt," is authored by J. Hwang, D. K. Shin, P. H. Yoon, W. S. Kurth, B. A. Larsen, G. D. Reeves and D. Y. Lee. The article appeared in the journal Physics of Plasmas June 20, 2017 [DOI: 10.1063/1.4984249]
Paris (ESA) Jun 16, 2017 Satellites are helping to predict favourable conditions for desert locusts to swarm, which poses a threat to agricultural production and, subsequently, livelihoods and food security. Desert locusts are a type of grasshopper found primarily in the Sahara, across the Arabian Peninsula and into India. The insect is usually harmless, but when they swarm they can migrate across long distances a ... read more Related Links American Institute of Physics Earth Observation News - Suppiliers, Technology and Application
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |