. | . |
Long-distance quantum information exchange achieves success at the nanoscale by Staff Writers Copenhagen, Denmark (SPX) Mar 19, 2019
At the Niels Bohr Institute, University of Copenhagen, researchers have realized the swap of electron spins between distant quantum dots. The discovery brings us a step closer to future applications of quantum information, as the tiny dots have to leave enough room on the microchip for delicate control electrodes. The distance between the dots has now become big enough for integration with traditional microelectronics and perhaps, a future quantum computer. The result is achieved via a multinational collaboration with Purdue University and the University of Sydney, Australia, now published in Nature Communications.
Size matters in quantum information exchange even on the nanometer scale This creates a dilemma, because if a quantum computer is ever going to see the light of day, we need both, fast spin exchange and enough room around quantum dots to accommodate the pulsed gate electrodes. Normally, the left and right dots in the linear array of quantum dots (Illustration 1) are too far apart to exchange quantum information with each other. Frederico Martins, postdoc at UNSW, Sydney, Australia, explains: "We encode quantum information in the electrons' spin states, which have the desirable property that they don't interact much with the noisy environment, making them useful as robust and long-lived quantum memories. But when you want to actively process quantum information, the lack of interaction is counterproductive - because now you want the spins to interact!" What to do? You can't have both long lived information and information exchange - or so it seems. "We discovered that by placing a large, elongated quantum dot between the left dots and right dots, it can mediate a coherent swap of spin states, within a billionth of a second, without ever moving electrons out of their dots. In other words, we now have both fast interaction and the necessary space for the pulsed gate electrodes ", says Ferdinand Kuemmeth, associate professor at the Niels Bohr Institute.
Collaborations are an absolute necessity, both internally and externally In fact, at the Center for Quantum Devices, major contenders for the implementation of solid-state quantum computers are currently intensely studied, namely semiconducting spin qubits, superconducting gatemon qubits, and topological Majorana qubits. All of them are voltage-controlled qubits, allowing researchers to share tricks and solve technical challenges together. But Kuemmeth is quick to add that "all of this would be futile if we didn't have access to extremely clean semiconducting crystals in the first place". Michael Manfra, Professor of Materials Engineering, agrees: "Purdue has put a lot of work into understanding the mechanisms that lead to quiet and stable quantum dots. It is fantastic to see this work yield benefits for Copenhagen's novel qubits". The theoretical framework of the discovery is provided by the University of Sydney, Australia. Stephen Bartlett, a professor of quantum physics at the University of Sydney, said: "What I find exciting about this result as a theorist, is that it frees us from the constraining geometry of a qubit only relying on its nearest neighbours". His team performed detailed calculations, providing the quantum mechanical explanation for the counterintuitive discovery. Overall, the demonstration of fast spin exchange constitutes not only a remarkable scientific and technical achievement, but may have profound implications for the architecture of solid-state quantum computers. The reason is the distance: "If spins between non-neighboring qubits can be controllably exchanged, this will allow the realization of networks in which the increased qubit-qubit connectivity translates into a significantly increased computational quantum volume", predicts Kuemmeth.
Sydney united to build a quantum harbor city Sydney, Australia (SPX) Mar 14, 2019 Research collaboration between UNSW and the University of Sydney has overcome a fundamental hurdle to building quantum computers in silicon, opening the way to further develop the machines at scale. The two groups, led by Professor David Reilly at the University of Sydney and Professor Andrew Dzurak at UNSW, have demonstrated that the state, or value, of a quantum bit (qubit) in silicon can be read out in a way that removes the need to have readout sensors alongside the qubits. Professor Dzu ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |