. 24/7 Space News .
SPACE MEDICINE
Like submicroscopic spacecrafts: graphene flakes to control neuron activity
by Staff Writers
Rome, Italy (SPX) May 10, 2019

Selective, safe and with a reversible effect: they are the nanomaterials, protagonists of a new study by SISSA which has shed light on their ability to reach specific sites and affect the action of specific brain cells. This opens up remarkable future scenarios in research and for developing possible therapies for neurological diseases.

Like in a science fiction novel, miniscule spacecrafts able to reach a specific site of the brain and influence the operation of specific types of neurons or drug delivery: graphene flakes, the subject matter of the new study of the group of SISSA professor Laura Ballerini, open up truly futuristic horizons.

With the researcher, Rossana Rauti, Ballerini is responsible for the study recently published in the journal "Nano Letters". Measuring just one millionth of a metre, these particles have proven able to interfere with the transmission of the signal at excitatory neuronal synaptic junctions Furthermore, the study has shown that they do so in a reversible manner, because they disappear without leaving a trace few days after they have been administered.

Basic research, which, thanks to this positive evidence, could initiate further studies, geared to investigating the possible therapeutic effects for the treatment of problems, such as epilepsy, in which an excess of the activity of the excitatory neurons is recorded or to study innovative ways to transport therapeutic substances in situ.

The research, carried out in association with the universities of Trieste, Manchester and Strasbourg, is conducted within the Graphene Flagship, the substantial funding project of the European Union, which aims to investigate the potential of graphene in the most diverse areas of application, from the biomedical to the industrial ones.

A selective and reversible effect
"We reported in in vitro models that these small flakes interfered with the transmission of the signals from one neuron to another acting at specific zones called synapses which are crucial to the operation of our nervous system" explain Ballerini and Rauti.

"The interesting thing is that their action is selective on specific synapses, namely those formed by neurons that in our brain have the role to excite (activate) their target neurons. We wanted to understand if this holds true not only in in vitro experiments but also inside an organism, with all the variable potential and complexity which derives from it". The result was more than positive.

"In our models we analysed the activity of the hippocampus, a specific area of the brain, injecting the flakes into that site. What we saw, thanks to fluorescent tracers, is that the particles effectively insinuate themselves only inside the synapses of excitatory neurons. In this way, they interfere with the activity of these cells. In addition, they do so with a reversible effect: after 72 hours, the physiological mechanisms of clearance of the brain completely removed all the flakes.

Neither big nor small: how the flakes work
The interest in the procedure, explain the researchers, also lies in the fact that the flakes are apparently well tolerated once injected into the organism: "The inflammatory response and the immune reaction has proved lower than that recorded when administering simple saline solution. This is very important for possible therapeutic purposes".

The specificity of the action of the flakes, explained the researchers, would reside in the size of the particles used. They cannot be bigger or smaller than those adopted for this study (which measured approx. 100-200 nanometres of diameter): "Size is probably at the root of selectivity: if the flakes are too big they are unable to penetrate the synapse, which are very narrow areas between one neuron and the other. If they are too small, they are presumably simply wiped out ultimately in both cases no effects on synapses were observed".

The research will now explore the potential developments of this discovery, with a possible therapeutic horizon of definite interest for different pathologies.

Research paper


Related Links
Scuola Internazionale Superiore di Studi Avanzati
Space Medicine Technology and Systems


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SPACE MEDICINE
ESA explores ageing process in space
Paris (ESA) May 05, 2019
Wrinkles, muscle pain, high blood pressure and a clumsy brain are all natural consequences of getting old. As our cells rust over time, a key to fighting chronic disease may be in tiny, smartly designed particles that have the potential to become an anti-ageing supplement. A European experiment seeking innovative antioxidants is on its way to space. SpaceX's Dragon spacecraft lifted off Saturday from Cape Canaveral, in the United States, destined for the International Space Station. Among its carg ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE MEDICINE
RSC Energia developed a one-orbit rendezvous profile

Observing Gaia from Earth to improve its star maps

NASA Aids Testing of Boeing Deep Space Habitat Ground Prototype in Alabama

Power Glitch in US Segment of ISS Fixed, Station Back to Full Power - NASA

SPACE MEDICINE
SpaceX acknowledges capsule destroyed

Japanese First Private Rocket MOMO Launched

China plans to launch carrier rocket at sea

Rocket Lab launches three research satellites for US Air Force

SPACE MEDICINE
Lockheed Martin completes testing milestone for Mars 2020 heat shield

Martian Dust Could Help Explain Water Loss, Plus Other Learnings From Global Storm

ESA to Lose Member State Support if ExoMars Launch Postponed - Director-General

InSight lander captures audio of first likely 'quake' on Mars

SPACE MEDICINE
China's Yuanwang-7 departs for space monitoring missions

China's tracking ship Yuanwang-2 starts new mission after retirement

China to build moon station in 'about 10 years'

China to enhance international space cooperation

SPACE MEDICINE
Euroconsult and RKF Engineering Solutions announce partnership agreement

AOL co-founder Steve Case: Space Coast needs venture capital

Cloud Constellation Corporation Selects Satellite Manufacturer LeoStella

Kongsberg supplies space electronics to Astranis

SPACE MEDICINE
US and Japanese scientists conduct joint composites study

Gold helps CT scans pick up the finest surface structures

Organ bioprinting gets a breath of fresh air

Promising material could lead to faster, cheaper computer memory

SPACE MEDICINE
Cosmic dust reveals new insights on the formation of solar system

Planetary Habitability? It's What's Inside That Counts

Rapid destruction of Earth-like atmospheres by young stars

Slime mold memorizes foreign substances by absorbing them

SPACE MEDICINE
Next-Generation NASA Instrument Advanced to Study the Atmospheres of Uranus and Neptune

Public Invited to Help Name Solar System's Largest Unnamed World

Europa Clipper High-Gain Antenna Undergoes Testing

Scientists to Conduct Largest-Ever Hubble Survey of the Kuiper Belt









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.