Subscribe free to our newsletters via your
. 24/7 Space News .




EARTH OBSERVATION
Lightning-made Waves in Earth's Atmosphere Leak Into Space
by Karen C. Fox for Goddard Space Flight Center
Greenbelt MD (SPX) Nov 29, 2011


Waves created by lightning flashes - here shown in blue, green, and red - circle around Earth, creating something called Schumann resonance. These waves can be used to study the nature of the atmosphere they travel through. Credit: NASA/Simoes

At any given moment about 2,000 thunderstorms roll over Earth, producing some 50 flashes of lightning every second. Each lightning burst creates electromagnetic waves that begin to circle around Earth captured between Earth's surface and a boundary about 60 miles up.

Some of the waves - if they have just the right wavelength - combine, increasing in strength, to create a repeating atmospheric heartbeat known as Schumann resonance.

This resonance provides a useful tool to analyze Earth's weather, its electric environment, and to even help determine what types of atoms and molecules exist in Earth's atmosphere, but until now they have only ever been observed from below.

Now, NASA's Vector Electric Field Instrument (VEFI) aboard the U.S. Air Force's Communications/Navigation Outage Forecast System (C/NOFS) satellite has detected Schumann resonance from space.

This comes as a surprise, since current models of Schumann resonance predict these waves should be caged at lower altitude, between the ground and a layer of Earth's atmosphere called the ionosphere.

"Researchers didn't expect to observe these resonances in space," says Fernando Simoes, a scientist at NASA's Goddard Space Flight Center in Greenbelt, Md. "But it turns out that energy is leaking out and this opens up many other possibilities to study our planet from above."

Simoes is the first author on a paper about these observations that appeared online in the journal Geophysical Research Letters on November 16 and will appear in the print publication in December. He explains that the concept of resonance in general is fairly simple: adding energy at the right time will help any given phenomenon grow.

Think of a swing - if you push it back just as it hits the top of its arc, you add speed. Push it backwards in the middle of its swing, and you will slow it down. When it comes to waves, resonance doesn't occur because of a swing-like push, but because a series of overlapping waves are synchronized such that the crests line up with the other crests and the troughs line up with the other troughs. This naturally leads to a much larger wave than one where the crests and troughs cancel each other out.

The waves created by lightning do not look like the up and down waves of the ocean, but they still oscillate with regions of greater energy and lesser energy.

These waves remain trapped inside an atmospheric ceiling created by the lower edge of the "ionosphere" - a part of the atmosphere filled with charged particles, which begins about 60 miles up into the sky. In this case, the sweet spot for resonance requires the wave to be as long (or twice, three times as long, etc) as the circumference of Earth.

This is an extremely low frequency wave that can be as low as 8 Hertz (Hz) - some one hundred thousand times lower than the lowest frequency radio waves used to send signals to your AM/FM radio. As this wave flows around Earth, it hits itself again at the perfect spot such that the crests and troughs are aligned. Voila, waves acting in resonance with each other to pump up the original signal.

While they'd been predicted in 1952, Schumann resonances were first measured reliably in the early 1960s. Since then, scientists have discovered that variations in the resonances correspond to changes in the seasons, solar activity, activity in Earth's magnetic environment, in water aerosols in the atmosphere, and other Earth-bound phenomena.

"There are hundreds, maybe thousands, of studies on this phenomenon and how it holds clues to understanding Earth's atmosphere," says Goddard scientist Rob Pfaff, Principal Investigator of the VEFI instrument and an author on the GRL paper. "But they're all based on ground measurements."

C/NOFS, of course, measured them much higher - at altitudes of 250 to 500 miles. While models suggest that the resonances should be trapped under the ionosphere, it is not unheard of that energy can leak through.

So the team began looking for waves of the correct, very low frequency in the observations from VEFI - an instrument built at NASA Goddard with high enough sensitivity to spot these very faint waves. And the team was rewarded. They found the resonance showing up in almost every orbit C/NOFS made around Earth, which added up to some 10,000 examples.

Detection of these Schumann resonances in space requires, at the very least, an adjustment of the basic models to incorporate a "leaky" boundary at the bottom of the ionosphere. But detecting Schumann resonance from above also provides a tool to better understand the Earth-ionosphere cavity that surrounds Earth, says Simoes.

"Combined with ground measurements, it provides us with a better way to study lightning, thunderstorms, and the lower atmosphere," he says. "The next step is to figure out how best to use that tool from this new vantage point."

.


Related Links
NASA Vector Electric Field Instrument (VEFI)
Earth Observation News - Suppiliers, Technology and Application






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARTH OBSERVATION
APL Proposes First Global Orbital Observation Program
Baltimore MD (SPX) Nov 29, 2011
A consortium led by researchers at the Johns Hopkins University Applied Physics Laboratory (APL) is proposing a geoscience program that would give scientists the first continuous real-time look at the Earth's surface and atmosphere through a global network of sensors. Called GEOScan, the program would focus on providing critical data to the global scientific community on topics including climate ... read more


EARTH OBSERVATION
Schafer Corp Signs Licensing Agreement with MoonDust Technologies

Russia wants to focus on Moon if Mars mission fails

Flying over the three-dimensional Moon

LRO Camera Team Releases High Resolution Global Topographic Map of Moon

EARTH OBSERVATION
NASA Launches Most Capable and Robust Rover to Mars

Did US climate weapon knock-out Russian probe

Russia's Medvedev evokes Stalin ahead of elections

The Martian Chronicles Continues With Russian Bit Part

EARTH OBSERVATION
Dutch astronaut's cheesy request

Looking for a Space Job

Thanksgiving in space may one day come with all the trimmings

More U.S. science degrees by foreign-born

EARTH OBSERVATION
15 patents granted for Chinese space docking technology

China plans major effort in pursuing manned space technology

Tiangong-1 orbiter enters long-term operation management

China launches two satellites: state media

EARTH OBSERVATION
FLEX-ible Insight Into Flame Behavior

Satellite junk no threat to space station crew

Space Station Trio Lands Safely in Kazakhstan

Russian Soyuz brings astronauts safely back to Earth

EARTH OBSERVATION
Assembly milestone reached with Ariane 5 to launch next ATV

Russia launches Chinese satellite

AsiaSat 7 Spacecraft Separation Successfully Completed

Pleiades 1 is readied for launch

EARTH OBSERVATION
Habitable Does not Mean 'Earth-Like'

Exo planet count tops 700

Giant planet ejected from the solar system

Three New Planets and a Mystery Object Discovered Outside Our Solar System

EARTH OBSERVATION
AsiaSat 7 Performs Post-Launch Maneuvers

"Cyber Monday" sizzles with US online shopping

New Light Cast on Electrons Heated to Several Billion Degrees By Lasers

Researchers reduce smartphones' power consumption by more than 70 percent




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement