. 24/7 Space News .
EXO WORLDS
Life's building blocks may have formed in interstellar clouds
by Staff Writers
Sapporo, Japan (SPX) Sep 30, 2019

From the abyss.

An experiment shows that one of the basic units of life - nucleobases - could have originated within giant gas clouds interspersed between the stars.

Essential building blocks of DNA - compounds called nucleobases - have been detected for the first time in a simulated environment mimicking gaseous clouds that are found interspersed between stars. The finding, published in the journal Nature Communications, brings us closer to understanding the origins of life on Earth.

"This result could be key to unravelling fundamental questions for humankind, such as what organic compounds existed during the formation of the solar system and how they contributed to the birth of life on Earth" says Yasuhiro Oba of Hokkaido University's Institute of Low Temperature Science.

Scientists have already detected some of the basic organic molecules necessary for the beginnings of life in comets, asteroids, and in interstellar molecular clouds: giant gaseous clouds dispersed between stars. It is thought that these molecules could have reached Earth through meteorite impacts some four billion years ago, providing key ingredients for the chemical cocktail that gave rise to life. Learning how these molecules formed is vital to understanding the origins of life.

The basic structural unit of DNA and RNA is called a nucleotide and is composed of a nucleobase, a sugar, and a phosphate group. Previous studies mimicking the expected conditions in interstellar molecular clouds have detected the presence of sugar and phosphate, but not of nucleobases.

Now, Yasuhiro Oba and colleagues at Hokkaido University, Kyushu University, and the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) have used advanced analytical methods to detect the fundamental nucleobases in a simulated interstellar cloud environment.

The team conducted their experiments in an ultra-high vacuum reaction chamber. A gaseous mixture of water, carbon monoxide, ammonia, and methanol was continuously supplied onto a cosmic-dust analogue at a temperature of -263 Celsius.

Two deuterium discharge lamps attached to the chamber supplied vacuum ultraviolet light to induce chemical reactions. The process led to the formation of an icy film on the dust analogue inside the chamber.

The team used a high-resolution mass spectrometer and a high-performance liquid chromatograph to analyse the product that formed on the substrate after warming it to room temperature. Recent advances in these technological tools allowed them to detect the presence of the nucleobases cytosine, uracil, thymine, adenine, xanthine, and hypoxanthine. They also detected amino acids, which are the building blocks of proteins, and several kinds of dipeptide, or a dimer of amino acid, in the same product.

The team suspects that past experiments simulating interstellar molecular cloud environments would have produced nucleobases, but that the analytical tools used were not sensitive enough to detect them in complex mixtures.

"Our findings suggest that the processes we reproduced could lead to the formation of the molecular precursors of life," says Yasuhiro Oba. "The results could improve our understanding of the early stages of chemical evolution in space."

Research paper


Related Links
Hokkaido University
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
Researchers mix RNA and DNA to study how life's process began billions of years ago
La Jolla CA (SPX) Sep 18, 2019
For decades, chemists have tested theories for how life began on Earth. One hypothesis has caught the scientific imagination for years: RNA World. This theory proposes that prebiotic molecules joined up early on to form RNA, the molecules that carry instructions from DNA in organisms today. RNA World posits that once RNA formed on Earth, it began replicating itself and later gave rise to molecules like DNA. RNA World is a fascinating theory, says Ramanarayanan Krishnamurthy, PhD, an associate prof ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Stars in its eyes, UAE celebrates its first astronaut in space

Researcher explores better use of microbes for space travel

First Arab set for ISS says voyage will make 'history'

Top Five Technologies Needed for a Spacecraft to Survive Deep Space

EXO WORLDS
After rollout, Soyuz rocket set to launch new crew to space station

Unmanned Japan craft launched toward space station: operator

Tunnel 9 personnel provide guidance for hypersonic experiment

Last Soyuz-FG Carrier Rocket installed at Baikonur

EXO WORLDS
Far out: Bosnian village tickled to share name with Mars crater

Trump marks Mars as next target, Moon 'not so exciting'

Carbon Dioxide Conversion Challenge could help human explorers live on Mars

Marvellous Mars from the North Pole to the Southern Highlands

EXO WORLDS
China's KZ-1A rocket launches two satellites

China's newly launched communication satellite suffers abnormality

China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

EXO WORLDS
Australian Government commits to join NASA in Lunar exploration and beyond

First launch of UK's OneWeb satellites from Baikonur planned for Dec 19

Iridium and OneWeb to collaborate on a global satellite services offering

Winning bootcamp ideas at Phi-week

EXO WORLDS
Celestia Technologies Group UK gears up for eScan expansion in the UK

MIT engineers develop 'blackest black' material to date

Mining industry seeks to polish tarnished reputation

Gem-like nanoparticles of precious metals shine as catalysts

EXO WORLDS
When dwarf stars give birth to giant planets

A planet that should not exist

Researchers mix RNA and DNA to study how life's process began billions of years ago

Looking for alien lurkers

EXO WORLDS
Huge Volcano on Jupiter's Moon Io Erupts on Regular Schedule

Stony-iron meteoroid caused August impact flash at Jupiter

Storms on Jupiter are disturbing the planet's colorful belts

ALMA shows what's inside Jupiter's storms









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.