Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
Less is more with adding graphene to nanofibers
by Gillian Klucas for UNL News
Lincoln NB (SPX) Dec 14, 2013


File image.

Figuring that if some is good, more must be better, researchers have been trying to pack more graphene, a supermaterial, into structural composites. Collaborative research led by University of Nebraska-Lincoln materials engineers discovered that, in this case, less is more.

The team, led by Yuris Dzenis, McBroom professor of mechanical and materials engineering and a member of UNL's Nebraska Center for Materials and Nanoscience, learned that using a small amount of graphene oxide as a template improves carbon nanomaterials which, in turn, promises to improve composite materials. Composites are used in everything from airplanes to bicycles and golf clubs.

Graphene is a one-atom thick layer of carbon with a crystalline structure that makes it exceptionally strong and an excellent heat and electrical conductor. It was the subject of research that earned the 2010 Nobel Prize in Physics.

UNL engineers collaborated with researchers from Northwestern University and Materials and Electrochemical Research Corp. of Tucson, Ariz., on this study. The UNL team developed a process to incorporate graphene oxide nanoparticles as a template to guide the formation and orientation of continuous carbon nanofibers, which should improve the fiber's properties.

That process involves crumpling the graphene, like crumpling a sheet of paper, in a way that improves graphene as a templating and orientation agent. Only small amounts of crumpled graphene nanoparticles are needed. A group led by chemist SonBinh Nguyen of Northwestern synthesized the graphene oxide.

"Many people are trying to put as much graphene as possible into fibers," Dzenis said, adding that it is difficult to do. "But we did the unconventional thing: We used very small quantities followed by carbonization."

The resulting carbon nanofiber structure has an orientation similar to fibers with demonstrated enhanced strength and other properties, Dzenis said. He and his colleagues are now testing their graphene-based nanofibers for these enhanced properties as well as improving the technique.

The method is promising, he said. It could lower the cost of making composites significantly because it requires only small quantities of expensive nanoparticles and uses an inexpensive nanofiber manufacturing process, which was developed at UNL.

"All of this has potential for high-performance but, at the same time, low-cost carbon nanofibers," Dzenis said.

The team reported its findings in the Dec. 10 issue of Advanced Functional Materials. Co-authors are UNL mechanical and materials engineering colleagues Dimitry Papkov and Alexander Goponenko; facilities specialist Xing-Zhong Li of the Nebraska Center for Materials and Nanoscience; Owen C. Compton, Zhi An and SonBinh T. Nguyen of Northwestern; and Alexander Moravsky of Materials and Electrochemical Research Corp.

.


Related Links
Nebraska Center for Materials and Nanoscience
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Oregon scientists offer new insights on controlling nanoparticle stability
Eugene OR (SPX) Dec 14, 2013
University of Oregon chemists studying the structure of ligand-stabilized gold nanoparticles have captured fundamental new insights about their stability. The information, they say, could help to maintain a desired, integral property in nanoparticles used in electronic devices, where stability is important, or to design them so they readily condense into thin films for such things as inks or cat ... read more


NANO TECH
Mining the moon is pie in the sky for China: experts

Ancient crater could hold clues about moon's mantle

Minerals in giant impact crater may be clues to moon's makeup, origin

Silent Orbit for China's Moon Lander

NANO TECH
NASA poised to launch Mars atmosphere probe

The Tough Task of Finding Fossils While Wearing a Spacesuit

Mars One Selects Lockheed Martin to Study First Private Unmanned Mission to Mars

SSTL selected for first private Mars mission

NANO TECH
European consortium space company to offer 'affordable' trips to space

Planning group calls for National Space Policy in Britain

Quails in orbit: French cuisine aims for the stars

Heat Shield for NASA's Orion Spacecraft Arrives at Kennedy Space Center

NANO TECH
China deploys 'Jade Rabbit' rover on moon

The Dragon Has Landed

Chinaese moon rover and lander photograph each other

China's Jade Rabbit lunar rover sends first photos from moon

NANO TECH
Altitude of International Space Station raised

NASA mulls spacewalks to fix space station

NASA reports coolant loop problem at ISS

Space station cooling breakdown may delay Orbital launch

NANO TECH
Arianespace orders 18 rockets for 2 bn euros

Iran sends second monkey into space

SpaceX to bid for rights to historic NASA launch pad

Arianespace to launch GSAT-15 and GSAT-16 satellites for India

NANO TECH
Feature of Earth's atmosphere may help in search for habitable planets

Astronomers discover planet that shouldn't be there

Hot Jupiters Highlight Challenges in the Search for Life Beyond Earth

Astronomers find strange planet orbiting where there shouldn't be one

NANO TECH
New sensor tracks zinc in cells

Morphing material has mighty potential

Polymers can be semimetals

A Stopwatch for Electron Flashes




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement