. | . |
Launching fusion reactions without a central magnet, or solenoid by Staff Writers Washington DC (SPX) Oct 28, 2016
The tokamak is an experimental chamber that holds a gas of energetic charged particles, plasma, for developing energy production from nuclear fusion. Most large tokamaks create the plasma with solenoids - large magnetic coils that wind down the center of the vessels and inject the current that starts the plasma and completes the magnetic field that holds the superhot gas in place. But future tokamaks must do without solenoids, which run in short pulses rather than for weeks or months at a time as commercial fusion power plants will have to do. Recent computer simulations have suggested a novel method for launching the plasma without using solenoids. The simulation modeling shows the formation of distinct, current carrying magnetic structures called plasmoids that can initiate the plasma and complete the complex magnetic field. Everything starts with magnetic field lines, or loops, that rise through an opening in the floor of the tokamak. As the field lines are electrically forced to expand into the vessel, a thin layer, or sheet, of electrical current can form. Through a process called magnetic reconnection, the sheet can break and form a series of ring-shaped plasmoids that are the magnetic equivalent to the bubble rings created by dolphins. The computationally predicted plasmoids have been confirmed with fast-camera images (Figure 1) inside the National Spherical Torus Experiment (NSTX), the major fusion facility at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL); the facility has since been upgraded. The plasmoids merge to form a large ring carrying up to 400,000 amperes of current, creating a plasma start-up phase inside the tokamak. This advanced modeling of plasmoids also led to another major finding: the conditions under which a large volume of field line closure and maximum start-up current can be achieved by the upgrade of the National Spherical Torus Experiment (NSTX-U). Plasmoid-like structures are also observed in nature such as during eruptive solar events. The global plasmoid formation observed in the tokamak sheds new light on the magnetic reconnection process and the trigger mechanism of solar flares. These findings also reveal that the same plasmoid-mediated reconnection that occurs in space has a leading role to play in closing magnetic field lines and starting up plasma in NSTX-U.
Related Links American Physical Society Powering The World in the 21st Century at Energy-Daily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |