. | . |
Landslides on Ceres reflect hidden ice by Staff Writers Atlanta GA (SPX) Apr 19, 2017
Massive landslides, similar to those found on Earth, are occurring on the asteroid Ceres. That's according to a new study led by the Georgia Institute of Technology, adding to the growing evidence that Ceres retains a significant amount of water ice. The study is published in the journal Nature Geoscience. It used data from NASA's Dawn spacecraft to identify three different types of landslides, or flow features, on the Texas-sized asteroid. Type I are relatively round, large and have thick "toes" at their ends. They look similar to rock glaciers and icy landslides in Earth's arctic. Type I landslides are mostly found at high latitudes, which is also where the most ice is thought to reside near Ceres' surface. Type II features are the most common of Ceres' landslides and look similar to deposits left by avalanches on Earth. They are thinner and longer than Type I and found at mid-latitudes. The authors affectionately call one such Type II landslide "Bart" because of its resemblance to the elongated head of Bart Simpson from TV's "The Simpsons." Ceres' Type III features appear to form when some of the ice is melted during impact events. These landslides at low latitudes are always found coming from large-impact craters. Georgia Tech Assistant Professor and Dawn Science Team Associate Britney Schmidt led the study. She believes it provides more proof that the asteroid's shallow subsurface is a mixture of rock and ice. "Landslides cover more area in the poles than at the equator, but most surface processes generally don't care about latitude," said Schmidt, a faculty member in the School of Earth and Atmospheric Sciences. "That's one reason why we think it's ice affecting the flow processes. There's no other good way to explain why the poles have huge, thick landslides; mid-latitudes have a mixture of sheeted and thick landslides; and low latitudes have just a few." The study's researchers were surprised at just how many landslides Ceres has in general. About 20 percent to 30 percent of craters greater than 6 miles (10 kilometers) wide have some type of landslide associated with them. Such widespread features formed by "ground ice" processes, made possible because of a mixture of rock and ice, have only been observed before on Earth and Mars. Based on the shape and distribution of landslides on Ceres, the authors estimate that the upper layers of Ceres may range from 10 percent to 50 percent ice by volume. "These landslides offer us the opportunity to understand what's happening in the upper few kilometers of Ceres," said Georgia Tech Ph.D. student Heather Chilton, a co-author on the paper. "That's a sweet spot between information about the upper meter or so provided by the GRaND (Gamma Ray and Neutron Detector (GRaND) and VIR (Visible and Infrared Spectrometer) instrument data, and the tens of kilometers-deep structure elucidated by crater studies." "It's just kind of fun that we see features on this small planet that remind us of those on the big planets, like Earth and Mars," Schmidt said. "It seems more and more that Ceres is our innermost icy world."
Paris (AFP) April 18, 2017 An asteroid stretching 650 metres (2,000 feet) across is on track to whoosh past Earth on Wednesday at a safe - but uncomfortably close - distance, according to astronomers. "Although there is no possibility for the asteroid to collide with our planet, this will be a very close approach for an asteroid this size," NASA's Jet Propulsion Laboratory said in a statement. Dubbed 2014-JO25, ... read more Related Links Dawn at NASA Asteroid and Comet Mission News, Science and Technology
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |