. 24/7 Space News .
EXO WORLDS
Lack of Oxygen Not a Showstopper For Life
by Charles Q. Choi for Astrobiology Magazine
Moffett Field CA (SPX) Apr 20, 2017


Steep cone in Yellowstone National Park. Image courtesy Dan Colman.

The hot springs of Yellowstone National Park may be extreme environments, but they are host to a diversity of microbes that could shed light on the evolution of life on Earth and, perhaps, what lurks on distant planets.

While photosynthetic life cannot tolerate the high temperatures of hot springs, microorganisms that are chemosynthetic - meaning they rely solely on chemicals, rather than sunshine, as their energy source - do well there. Many of these peculiar microbes are believed to be the closest modern relatives to the earliest life on our planet.

"Chemosynthetic microorganisms provide useful models for understanding how life might persist in extraterrestrial systems, like the subsurface of Europa, for instance, where light energy will not be available but abundant sources of chemical energy might be," said Daniel Colman, a geomicrobiologist at Montana State University in Bozeman.

In 2014, Colman and his colleagues collected samples from chemosynthetic microbial communities in 15 hot springs in Yellowstone National Park. Hot springs are complex environments, where nutrient availability varies widely, even within the same hot spring. Colman analyzed how these variations might shape the kinds of chemosynthetic communities that might exist at any given spot.

Colman and his team detailed their findings in the paper, "Ecological differentiation in planktonic and sediment-associated chemotrophic microbial populations in Yellowstone hot springs," in the journal FEMS Microbiology Ecology.

The researchers looked at microorganisms that were either planktonic, that is, free-swimming, or those living in sediment, and then examined the chemistry of the water and the mineralogy of the sediments.

They focused on substances known as oxidants, which help organisms capture energy by stripping electrons from nutrients. Whereas humans and many other organisms rely on oxygen to act as their primary oxidant, chemosynthetic microbes rely on other oxidants that provide less energy, such as forms of iron and sulfur that are oxidized (oxidized materials have lost electrons).

The scientists found that planktonic communities in Yellowstone were dominated by bacteria that are microaerophiles, which need oxygen to survive but at concentrations lower than is present in Earth's atmosphere. In contrast, sediment communities in Yellowstone were dominated by chemosynthetic microbes that rely on inorganic substances such as elemental sulfur or oxidized iron as their oxidants.

These findings shed light on how and why hot spring microbes in sediments differ from those in the water. Microbes living in water that has been exposed to, and mixed with air, can use oxygen from the air as their oxidant, while microbes in sediments that are likely oxygen-poor have to make do with other kinds of oxidants.

The researchers expect that early life on Earth was limited by the availability of oxidants and had to make do with what was around them. The same might be true of life elsewhere in the Universe.

"Understanding the present-day distributions of microorganisms as they relate to environmental factors can provide an idea of how life evolved in response to changing environments over Earth's history and over the history of life's evolution," Colman said.

Colman is especially interested in the subsurface microbial communities at Yellowstone, since they may, in some ways, resemble extraterrestrial settings on places like Europa. Nothing is known of the nature, or even existence of, a shallow, high-temperature subsurface biosphere in Yellowstone National Park, since drilling of any kind is prohibited on national park lands.

NASA is interested in this research because developing an understanding of life in the hot springs of Yellowstone has the potential to shed light on how life may thrive in extraterrestrial environments that are similarly high in temperature and pressure and low in nutrients, Colman said.

"These environments are understudied in astrobiology research, but hold tremendous promise as accessible analogs for extraterrestrial habitable environments that might be present on Enceladus, Mars, or Europa," Colman said.

For instance, just as the sediments of Yellowstone's hot springs are low in oxygen, "we would expect that life in other planetary body subsurface environments would likely be plagued by a chronic lack of oxidants, like oxygen, and would need to make do with oxidants that provide less energy," Colman said.

EXO WORLDS
Deep-sea animals make their own light
Moss Landing CA (SPX) Apr 18, 2017
Ever since explorer William Beebe descended into the depths in a metal sphere in the 1930s, marine biologists have been astounded by the number and diversity of glowing animals in the ocean. Yet few studies have actually documented the numbers of glowing animals at different depths. In a new study in Scientific Reports, MBARI researchers Severine Martini and Steve Haddock show that three q ... read more

Related Links
Astrobiology Magazine
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Lunar, Martian Greenhouses Designed to Mimic Those on Earth

NASA spacesuits over budget, tight on timeline: audit

'Better you than me,' Trump tells record-breaking astronaut

Cygnus docks with ISS, delivering 28 Cubesats from multiple customers

EXO WORLDS
New Russian Medium-Class Carrier Rocket Could Compete With SpaceX's Falcon

RSC Energia, Boeing Hammer Out a Deal on Sea Launch Project

India seeks status as a major space power with more satellite launches

India to Launch Carrier Rocket With Higher Payload Capacity in May

EXO WORLDS
SwRI-led team discovers lull in Mars' giant impact history

Danish Martian Experts Get Their Hands on a Piece of 'Black Beauty'

New Look at 2004's Martian Hole-in-One Site

Researchers Produce Detailed Map of Potential Mars Rover Landing Site

EXO WORLDS
China courts international coalition set up to promote space cooperation

Commentary: Innovation drives China's space exploration

Macao marks 2nd China Space Day with astronaut sharing space experience

China's Long March-5 Y2 carrier rocket leaves for launch site

EXO WORLDS
ESA boosting its Argentine link with deep space

Arianespace, Intelsat and SKY Perfect JSAT sign a new Launch Services Agreement, for Horizons 3e

Airbus and Intelsat team up for more capacity

Commercial Space Operators To Canada: "We're Here, and We can Help"

EXO WORLDS
Man-Made Space Junk Puts Astronauts, Operational Spacecraft in Serious Danger

Engineering technique is damaging materials research reveals

Finding order and structure in the atomic chaos where materials meet

Lockheed Martin secures $1.6 billion contract for counterfire radars

EXO WORLDS
Rocky super-earth found in habitable zone of small red star

Lack of Oxygen Not a Showstopper For Life

Detecting Life in the Driest Place on Earth

In experiments on Earth, testing possible building blocks of alien life

EXO WORLDS
ALMA investigates 'DeeDee,' a distant, dim member of our solar system

Nap Time for New Horizons

Hubble spots auroras on Uranus

Cold' Great Spot discovered on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.