. | . |
JILA researchers see signs of interactive form of quantum matter by Staff Writers Washington DC (SPX) Nov 01, 2018
JILA researchers have, for the first time, isolated groups of a few atoms and precisely measured their multi-particle interactions within an atomic clock. The advance will help scientists control interacting quantum matter, which is expected to boost the performance of atomic clocks, many other types of sensors, and quantum information systems. The research is described in a Nature paper posted early online Oct. 31. JILA is jointly operated by the National Institute of Standards and Technology (NIST) and the University of Colorado Boulder. NIST scientists have been predicting "many body" physics and its benefits for years, but the new JILA work provides the first quantitative evidence of exactly what happens when packing together a few fermions - atoms that cannot be in the same quantum state and location at the same time. "We are trying to understand the emergence of complexity when multiple particles - atoms here - interact with each other," NIST and JILA Fellow Jun Ye said. "Even though we may understand the rules perfectly on how two atoms interact, when multiple atoms get together there are always surprises. We want to understand the surprises quantitatively." Today's best tools for measuring quantities such as time and frequency are based on control of individual quantum particles. This is the case even when ensembles of thousands of atoms are used in an atomic clock. These measurements are approaching the so-called standard quantum limit - a "wall" preventing further improvements using independent particles. Harnessing of many-particle interactions could push that wall back or even break through it, because an engineered quantum state could suppress atom collisions and protect quantum states against interference, or noise. In addition, atoms in such systems could be arranged to cancel each other's quantum noise such that sensors would get better as more atoms were added, promising significant leaps in precision and data-carrying capacity. In the new research, the JILA team used their three-dimensioned strontium lattice clock], which offers precise atom control. They created arrays of between one and five atoms per lattice cell, and then used a laser to set the clock "ticking," or switching at a specific frequency between two energy levels in the atoms. JILA's new imaging technique was used to measure the atoms' quantum states. The researchers observed unexpected results when three or more atoms were together in a cell. The results were nonlinear, or unpredicted based on past experience, a hallmark of multi-particle interactions. The researchers combined their measurements with theoretical predictions by NIST colleagues Ana Maria Rey and Paul Julienne to conclude that multi-particle interactions occurred. Specifically, the clock's frequency shifted in unexpected ways when three or more atoms were in a lattice site. The shift is different from what one would expect from summing up various pairs of atoms. For example, five atoms per cell caused a shift of 20 percent compared to what would normally be expected. "Once you get three atoms per cell, the rules change," Ye said. This is because the atoms' nuclear spins and electronic configurations play together to determine the overall quantum state, and the atoms can all interact simultaneously instead of in a pair-wise fashion, he said. Multi-particle effects also appeared in crowded lattice cells in the form of an unusual, rapid decay process. Two atoms per triad formed a molecule and one atom remained loose, but all had enough energy to escape the trap. By contrast, a single atom is likely to remain in a cell for a much longer time, Ye said. "What this means is, we can make sure there is only one atom per cell in our atomic clock," Ye said. "Understanding of these processes will allow us to figure out a better path for making improved clocks, as particles inevitably will interact if we pack enough of them nearby to improve signal strength." The JILA team also found that packing three or more atoms into a cell could result in long-lived, highly entangled states, meaning the atoms' quantum properties were linked in a stable way. This simple method of entangling multiple atoms may be a useful resource for quantum information processing.
Research Report: Emergence of multi-body interactions in few-atom sites of a fermionic lattice clock
More goals in quantum soccer Bonn, Germany (SPX) Oct 25, 2018 Let's suppose you were allowed to blindfold German soccer star Timo Werner and turn him on his own axis several times. Then you'd ask him to take a shot blind. It would be extremely unlikely that this would hit the goal. With a trick, Bonn physicists nevertheless managed to achieve a 90-percent score rate in a similar situation. However, their player was almost 10 billion times smaller than the German star striker - and much less predictable. It was a rubidium atom that the researchers had i ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |