. | . |
It's what underneath that counts by Staff Writers Edmonton, Canada (SPX) Oct 31, 2016
To the naked eye, ancient rocks may look completely inhospitable, but in reality, they can sustain an entire ecosystem of microbial communities in their fracture waters isolated from sunlight for millions, if not billions, of years. New scientific findings discovered the source of the essential energy to sustain the life kilometers below Earth's surface with implications for life not only on our planet but also on Mars. The two essential substances used by the deep subsurface microbes are hydrogen and sulfate dissolved in the fracture water. There is a basic understanding that reactions between the water and minerals in the rock produce hydrogen, but what about sulfate? "We are very interested in the source of sulfate and how sustainable it is in those long isolated fracture water systems" says Long Li, assistant professor in the University of Alberta's Department of Earth and Atmospheric Sciences and Canada Research Chair in Stable Isotope Geochemistry. Li - who worked as postdoctoral fellow with Barbara Sherwood Lollar, professor in the Department of Earth Sciences at University of Toronto and Boswell Wing in the Department of Earth and Planetary Sciences at McGill University - examined the relative ratios of several types of sulfur atoms that have different neutron numbers, namely sulfur isotopes, in the dissolved sulfate in the billion-year-old water collected from 2.4 kilometers below the surface in Timmins, Ontario, Canada. They observed a unique distribution pattern called sulfur isotope mass-independent fractionation. "To date this signature of ancient Earth sulfur has only been found in rocks and minerals," says Sherwood Lollar. "Based on the match in the isotopic signature between the dissolved sulfate and the pyrite minerals in the 2.7 billion year old host rocks, we demonstrated that the sulfate was produced by oxidation of sulfide minerals in the host rocks by oxidants generated by radiolysis of water. "The same pyrite and other sulfide ores that make these rocks ideal for economic mining of metals, produce the 'fuel' for microbial metabolisms." The authors demonstrate that the sulfate in this ancient water is not modern sulfate from surface water flowing down, but instead, just like the hydrogen, is actually produced in place by reaction between the water and the wall rock. What this means is that the reaction will occur naturally and can persist for as long as the water and rock are in contact, potentially billions of years. "The wow factor is high," says Li, who explains that billion-year-old rocks, exposed or unexposed, compose more than half of Earth's continental crust. "If geological processes can naturally supply a steady energy source in these rocks, the modern terrestrial subsurface biosphere may expand significantly both in breadth and depth." Some locations on Mars have similar mineral assemblages to the rocks in Timmins. This allows the scientists to speculate that microbial life can indeed be supported on Mars. "Because this is a fairly common geological setting on modern Mars, we think that as long as the right minerals and liquid water are present, maybe kilometers below the Martian surface, they may interact and produce energy for life, if there is any." Li concludes that if there is any life on Mars right now - a question that has long piqued people's curiosity - the best bet is to look below the surface. "Sulfur mass-independent fractionation in subsurface fracture waters indicates a long-standing sulfur cycle in Precambrian rocks" appeared in the October 27 issue of Nature Communications, an open access journal part of the Nature group of publications.
Related Links University of Alberta Earth Observation News - Suppiliers, Technology and Application
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |