Subscribe free to our newsletters via your
. 24/7 Space News .




EARLY EARTH
Iron preserves, hides ancient tissues in fossilized remains
by Staff Writers
Raleigh NC (SPX) Dec 08, 2013


Hemoglobin seems to be the key. Both birds and crocodiles, the dinosaur's closest living relatives, have large, nucleated red blood cells. Therefore they also have more hemoglobin per cell than mammals.

New research from North Carolina State University shows that iron may play a role in preserving ancient tissues within dinosaur fossils, but also may hide them from detection. The finding could open the door to the recovery of more ancient tissues from within fossils.

Mary Schweitzer, an NC State paleontologist with a joint appointment at the N. C. Museum of Natural Sciences, first announced the surprising preservation of soft tissues in a T. rex fossil in 2005.

Her subsequent work identified proteins in the soft tissue that seemed to confirm that the tissue was indeed T. rex tissue that had been preserved for millions of years. But the findings remained controversial in part because no one understood the chemical processes behind such preservation.

Schweitzer's latest research shows that the presence of hemoglobin - the iron-containing molecule that transports oxygen in red blood cells - may be the key to both preserving and concealing original ancient proteins within fossils. Her results appear in Proceedings of the Royal Society B.

"Iron is necessary for survival, but it's also highly reactive and destructive in living tissues, which is why our bodies have proteins that transport iron molecules to where they are needed but protect us from unwanted reactions at the same time," Schweitzer says.

"When we die, that protective mechanism breaks down and the iron is turned loose on our tissues - and that destructive process can act in much the same way formaldehyde does to preserve the tissues and proteins."

Hemoglobin seems to be the key. Both birds and crocodiles, the dinosaur's closest living relatives, have large, nucleated red blood cells. Therefore they also have more hemoglobin per cell than mammals.

If dinosaur blood cells were similar to either one of those species, which seems likely, then their blood cells would also contain much more hemoglobin than human cells, amplifying iron's preservative effect on the tissues. If the hemoglobin were contained in a bone in a sandstone environment, keeping it dry and insulated from microbes, preservation becomes more likely.

Schweitzer and her team noticed that iron particles are intimately associated with the soft tissues preserved in dinosaurs. But when they chelated - or removed the iron from - soft tissues taken from a T. rex and a Brachyolophosaurus, the chelated tissues reacted much more strongly to antibodies that detect the presence of protein, suggesting that the iron may be masking their presence in these preserved tissues.

They then tested the preservation hypothesis by using blood vessels and cells taken from modern ostrich bone. They soaked some of these vessels in hemoglobin taken from red blood cells, while placing other vessels in water. Two years later, the hemoglobin-treated soft vessels remained intact, while those soaked in water degraded in less than a week.

"We know that iron is always present in large quantities when we find well-preserved fossils, and we have found original vascular tissues within the bones of these animals, which would be a very hemoglobin-rich environment after they died," Schweitzer says.

"We also know that iron hinders just about every technique we have to detect proteins. So iron looks like it may be both the mechanism for preservation and the reason why we've had problems finding and analyzing proteins that are preserved."

"A role for iron and oxygen chemistry in preserving soft tissues, cells and molecules from deep time"; Authors: Mary H. Schweitzer, Wenxia Zheng, Timothy P. Cleland, North Carolina State University; Mark Goodwin, Museum of Paleontology, Berkeley; Elizabeth Boatman, University of California Berkeley; Elizabeth Theil, CHORI and North Carolina State University; Matthew A. Markus and Sirine C. Fakra, Lawrence Berkeley National Laboratory, Berkeley Published: Proceedings of the Royal Society B

.


Related Links
North Carolina State University
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARLY EARTH
Ancient minerals: Which gave rise to life?
Washington DC (SPX) Nov 27, 2013
Life originated as a result of natural processes that exploited early Earth's raw materials. Scientific models of life's origins almost always look to minerals for such essential tasks as the synthesis of life's molecular building blocks or the supply of metabolic energy. But this assumes that the mineral species found on Earth today are much the same as they were during Earth's first 550 millio ... read more


EARLY EARTH
Silent Orbit for China's Moon Lander

China's most moon-like place

LADEE Instruments Healthy and Ready for Science

China launches first moon rover mission

EARLY EARTH
Rover results include first age and radiation measurements on Mars

Mars lake may have been friendly to microbes: NASA

One-way ticket to Mars: space colonists wanted!

Martian Laser Surpasses 100,000 Zaps

EARLY EARTH
Space exploration can drive the next agricultural revolution

Global patent growth hits 18-year high

Facebook joins NYU in artificial intelligence lab

LAS Tower Complete in Preparation for Orion's First Mission

EARLY EARTH
China moon rover enters lunar orbit: Xinhua

Turkey keen on space cooperation with China

China space launch debris wrecks villagers' homes: report

Designer: moon rover uses cutting-edge technology

EARLY EARTH
New crew to run space station in March

Russian android may take on outer space operations at ISS

Repurposing ISS Trash for Power and Water

Russian spacecraft with advanced navigation system docks with ISS

EARLY EARTH
Russian Proton-M rocket launches Inmarsat-5F1 satellite

Basic build-up is being completed for Arianespace's Soyuz to launch Gaia

Third time a charm: SpaceX launches commercial satellite

Arianespace's role as a partner for the US satellite industry

EARLY EARTH
Hot Jupiters Highlight Challenges in the Search for Life Beyond Earth

Astronomers find strange planet orbiting where there shouldn't be one

Hubble Traces Subtle Signals of Water on Hazy Worlds

Astronomers detect water in atmosphere of distant exoplanets

EARLY EARTH
SST Australia: Signed, Sealed and Ready for Delivery

Scientists build a low-cost, open-source 3D metal printer

An ecosystem-based approach to protect the deep sea from mining

Study shows how water dissolves stone, molecule by molecule




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement